PART 3

Stem Cell Disorders

CHAPTER 8

Inherited Bone Marrow Failure Syndromes

Blanche P. Alter and Alan D. D’Andrea

Constitutional aplastic anemia was defined by O’Gorman
Hughes (1) as “chronic bone marrow failure associated with
other features, such as congenital anomalies, a familial inci-
dence, or thrombocytopenia at birth.” In fact, he was referring
to inherited aplastic anemia. Patients with constitutional aplastic
anemia are genetically at risk for bone marrow failure, which
may be expressed at birth (and therefore congenital), but it
often develops later. O’Gorman Hughes further divided con-
stitutional aplastic anemia into three types by using terminol-
ogy that is confusing and no longer relevant. We refer to each
disorder by its eponym, until more specific information
becomes available, and to the entire group as the inherited bone
marrow failure syndromes, so as to distinguish them from
acquired aplastic anemia.

We can sometimes identify homozygotes for autosomal-
Tecessive types of inherited bone marrow failure syndromes (or
hemizygotes for X-linked disorders) by phenotype, although
We cannot easily identify heterozygotes except by inference
from family studies or by mutation analysis in disorders and in
families in which the mutation is known. Inherited bone mar-
Tow failure is probably more common than published reports
indicate, because the phenotype may range from severely
abnormal to entirely normal (see the section Inheritance and
Environment). In this section, we discuss the classic phenotypes
in the major inherited bone marrow failure syndromes and
emphasize the variation within each category. Some of this vari-
ation may result from the inadvertent inclusion of patients with
congenital but not inherited phenotypes that resemble the
genetic conditions (phenotypes), because until recently there

Was no specific diagnostic test for most of the disorders.

The incidence of inherited marrow failure is difficult to ascer-
tain from the literature. Among 134 patients with all types of
aplastic anemia who were seen at the Children’s Hospital Medi-
cal Center in Boston from 1958 to 1977, 40 patients appeared to
have inherited disorders (2) (Fig. 8-1). Twenty-six patients had
Fanconi’s anemia (all diagnosed in the era before testing of chro-
mosome breakage), four patients developed aplastic anemia after
amegakaryocytic thrombocytopenia, and ten patients had famil-
ial aplastic anemia without physical or cytogenetic evidence for
Fanconi’s anemia. In 21 years at the Prince of Wales Hospital in
Australia (1964 to 1984), 12 of 34 patients were found to have
inherited syndromes, including eight patients with Fanconi’s
anemia (3).

In our earlier analysis of the literature, we found that approxi-
mately 25% of cases of childhood aplastic anemia were diagnosed
as inherited, which is probably an underestimate (4). The genetic
syndromes must be considered carefully in patients of any
age with aplastic anemia, because the prognosis, treatment, and
approach to bone marrow transplantation (BMT) and potential
gene therapy are different when the hematologic disorder is inher-
ited rather than acquired. More detailed reviews of the inherited
bone marrow failure syndromes can be found elsewhere (5,6).

PANCYTOPENIAS

Fanconi’s Anemia

Fanconi’s anemia was first described by Fanconi (7) in 1927 in
three brothers with pancytopenia combined with physical
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Figure 8-1. Age at diagnosis of inherited aplastic anemia in 40 patients who
were seen at the Children’s Hospital Medical Center, Boston, from 1958 to
1970. Twenty-six patients had Fanconi’s anemia, four patients had amega-
karyocytic thrombocytopenia (Amega) and developed aplastic anemia, and
ten patients (in six families) had other familial bone marrow failure syn-
dromes. (Adapted from Alter BP, Potter NU, Li FP. Classification and aetiol-
ogy of the aplastic anaemias. Clin Haematol 1978;7:431-465.)

abnormalities. The anemia was macrocytic and thus was called
pernizioisiforme, despite no further evidence for megaloblastic
anemia. Uehlinger (8) then reported a similar patient with
aplastic anemia and abnormalities of the thumb and kidney,
and Fanconi (9) indicated that Naegeli had suggested in 1931
that familial aplastic anemia plus congenital anomalies should
be called Fanconi’s anemia.

The diagnosis of Fanconi’s anemia is based on the finding
of characteristic chromosomal breaks in cells that are cultured
with a clastogenic agent and is confirmed by complementation
or mutation analysis (see the section Cellular Phenotype). The
patient’s physical appearance may be normal, and he or she
may or may not have aplastic anemia. More than 1200 cases of
Fanconi’s anemia have been mentioned in the literature with
sufficient detail for many of the analyses that are described in
this section (Table 8-1). The male to female ratio is 1.2:1.0,
which is consistent with autosomal-recessive inheritance.
Patients have been reported from more than 60 countries and
represent all ethnic and racial groups, including whites,
blacks, Asians, Native Americans, and persons from India.
Figure 8-2 shows the distribution of ages at diagnosis.

TABLE 8-1. Fanconi’s Anemia Literature

All Patients

Number of cases 1206
Male to female ratio 1.24:1.00
Male age at diagnosis (in yr)

Mean 8.1

Median 6.5

Range 0-48
Female age at diagnosis (in yr)

Mean 9

Median 8

Range 048
Number of males < 1 yr of age 27 (4%)
Number of females <1 yr of age 16 (3%)
Number of males 216 yr of age 57 (9%)
Number of females 216 yr of age 47 (9%)
Percent of patients who were reported deceased 38
Projected median survival (in yr) 20
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Figure 8-2. Age at diagnosis in approximately 1200 cases of Fanconi’s
anemia that were published from 1927 to 2000.

Although diagnoses were usually made when aplastic anemia

was detected, some diagnoses were made in nonanemic sib-

lings. More recently, diagnoses have also been made after

cytogenetic studies in patients with physical anomalies and

normal blood counts. The median age at diagnosis in males

and females was 6.5 and 8 years of age, respectively. Although .
the majority of the patients were younger than 15 years of age
at the time of the diagnosis of Fanconi’s anemia, 4% were diag-
nosed between birth and 1 year of age, and less than half of
those patients had hematologic manifestations at the time of
diagnosis. Twenty-seven patients were male, and 16 patients
were female. Thus, Fanconi’s anemia cannot be excluded as
the cause of aplastic anemia in the first year of life, because :
“the patient is too young.” At the other end of the age spec- -
trum, 9% of patients were diagnosed at 16 years of age or |
older. Fifty-seven patients were male, and 47 patients were
female. The proportion of patients with Fanconi’s anemia who
are adults is undoubtedly underestimated. Inherited aplastic
anemia is not usually considered in an adult with aplastic ane-
mia, with or without characteristic physical findings. Testin
for chromosome breakage is required to identify Fanconi’s. %
anemia as the cause of the aplasia, but it is usually not per- &
formed for adult patients.

PHYSICAL EXAMINATION
The first patients were diagnosed with Fanconi’s anemia
because of the combination of aplastic anemia and physical
anomalies or because of other family members with aplasti¢
anemia or anomalies, or both. This bias in the literature may
have contributed to the perception that patients must ha
physical anomalies for this diagnosis. The more recent tests f
chromosome breakage and for specific genotypes have led
diagnoses in older patients and in those without overt bir
defects. Patients with characteristic anomalies are often dia
nosed without hematologic involvement.

Overall, approximately 25% of the literature cases had ndj
anomalies, whereas 11% had only short stature or skin pigme
tary changes, or both. The frequencies of the more commd!
birth defects are summarized in Table 8-2. Physical abnormali
ties occurred more frequently in the patients who were dia
nosed in infancy than in those who were diagnosed as adul
with the exception of short stature and café-au-lait spots. Figu
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TABLE 8-2. Physical Abnormalities in Fanconi’s Anemia

Age at Diagnosis
Abnormality All Patients <1Yr of Age 216 Yr of Age
Number of cases 1206 43 (4%) 104 (9%)
Skin pigment or café-au-lait spots, or both 55 37 61
Short stature 51 47 57
Upper limbs 43 63 39
Abnormal gonads, male 32 37 44
Abnormal gonads, female 3 . 50 6
Head 26 37 18
Eyes 23 33 24
Renal 21 42 19
Birth weight < 2500 g 11 47 8
Developmental disability 11 5 8
Ears, hearing decreased 9 23 11
Legs 8 16 7
Cardiopulmonary 6 16 5
Gastrointestinal 5 28 6
No anomalies 25 16 23
Short stature or skin pigment, or both 11 5 19

NOTE: All values, except those in the “Number of cases” row, are percentages.

8-3 shows a boy with almost all the classic anomalies that are
seen in patients with Fanconi’s anemia. The breadth of anoma-
lies is wide, and some patients clearly have none.

The abnormalities in Fanconi’s anemia are listed in detail in
Table 8-3. The most common finding is skin hyperpigmentation,

a generalized brown melanin-like darkening that is most prom-
inent on the trunk, neck, and intertriginous areas and that
becomes more obvious with age. Children who are affected are
often thought to have a permanent suntan. Café-au-lait spots
are common, alone or combined with hyperpigmentation, and

Figure 8-3. Three-year-old boy with Fanconi’s anemia, with several phenotypic features. A: Front view.
B: Face. (continued)
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Figure 8-3. (continued) C: Hands. D: The back of the right shoulder. Features to be noted are short stature,
thumbs attached by threads, microcephaly, broad nasal base, epicanthal folds, micrognathia, and café-au-

lait spot with hypopigmented areas beneath.

hypopigmented areas are also seen. The number and size of
these pigment changes increases with age (10). Café-au-lait
spots may actually be more common than hyperpigmentation,
but many case reports do not differentiate between them (11).

Microsomia, which is manifested by short stature and small
delicate features, was often the presenting complaint before the
development of hematologic problems. Many patients did not
eat or grow well in the early years. Upper limb abnormalities,
particularly absence or hypoplasia of thumbs, were reported in
more than one-half of patients. Absent or hypoplastic radii were
always associated with absent or hypoplastic thumbs [unlike
thrombocytopenia-absent radius (TAR) syndrome, in which the
thumbs are always present despite the absence of the radii].
Supernumerary, bifid thumbs and thumbs that were attached
only by threads were also common. Flattening of the thenar
eminence and weakness of radial pulses are subtle but common
findings in our own experience, and are more common than the
literature reflects.

The next most common physical problem involves the geni-
talia in one-third of male patients, with underdevelopment or
undescended testes, or both. Abnormal gonadal development
was commented on in only 3% of females, although abnormali-
ties in menses and early menopause were also mentioned in a
few instances.

Abnormally shaped heads were reported in 25% of patients
with Fanconi’s anemia, with most having microcephaly. The
facies are often characteristic (Fig. 8-3). Neck anomalies lead to
the perception of short or webbed necks, and spine anomalies
also occur. The most common abnormalities of the eyes are
microphthalmia and strabismus, as well as epicanthal folds,
hypertelorism, and ptosis. Ear problems, including deafness as
well as structural abnormalities of the external or middle ear,
occur in approximately 10% of patients.

Renal defects, most often ectopic, pelvic, or horseshoe kid-
neys, as well as absent or hypoplastic kidneys, are found in
more than 20% of Fanconi’s anemia patients. Most of the renal
problems are structural, although functional defects that result
in reflux or infections can occur. The incidence of renal struc-
tural abnormalities may actually be higher than is cited here,
because many patients do not have imaging studies performed.

Several abnormalities were described in fewer than 10% of
the reports. These include low birth weight (particularly in
those who were diagnosed in infancy), developmental delay,
defects that involve the lower limbs, congenital heart disease,
and gastrointestinal anomalies. Some of the feeding difficulties
of infants with Fanconi’s anemia might be due to undocu-

mented gastrointestinal abnormalities. The incidence and types
of anomalies are similar in both sexes.

Auerbach et al. (12) used a stepwise multivariate analysis of
the first 162 patients in the International Fanconi Anemia Regis-
try (IFAR) to develop a scoring system that discriminated
between patients with clastogenic stress-induced chromosome
breakage [using diepoxybutane (DEB)] and those without chro-
mosome breakage. One point each is added for microphthalmia,
birthmarks, genitourinary abnormalities, growth retardation,
thrombocytopenia, and the absence of radius or thumb, or both.
One point is subtracted for learning disabilities, and one point is
subtracted for other skeletal abnormalities. Higher scores mean
that the probability of Fanconi’s anemia is increased. This system
was developed before the use of complementation or mutation
analysis to confirm the diagnosis of Fanconi’s anemia.

The terms constitutional aplastic anemia type II and Estren-
Datmeshek aplastic anemia were used to describe patients who
have familial aplastic anemia but lack anomalies. The original
paper by Estren and Dameshek (13) described two such fami-
lies. In fact, two of the patients did have undescended testes. Li
and Potter (14) reinvestigated one of these families and discov-
ered that a second cousin, whose parents were both cousins of
the original parents, had typical Fanconi’s anemia. Now that
chromosome breakage and molecular testing are available,
patients whose anemia might have been called Estren-Dameshek
can be correctly diagnosed as Fanconi’s anemia. Many patients
who were reported in the literature were entirely normal or had
only short stature or changes in skin pigment.

Further evidence that the Estren-Dameshek patients belong
to the Fanconi’s anemia spectrum is provided by the IFAR data
(12). In that registry, the diagnosis of Fanconi’s anemia was
made only when clastogenic stress-induced chromosome breaks
were found, independent of physical appearance and family
history (although many of the physically and hematologically
normal children were tested only because of a positive family
history). Thirty percent of the Fanconi’s anemia group had
aplastic anemia without anomalies, and 7% had neither. Two
smaller studies of affected siblings of probands showed that at
least 25% of those who were affected lacked anomalies (15,16).
Fanconi’s anemia is considered to include a spectrum of physi-
cal findings, which range from totally normal to the extreme of
all the problems that were previously listed.

INHERITANCE AND ENVIRONMENT
Fanconi’s anemia is clearly inherited in an autosomal-reces-
sive pattern, despite the apparent slight preponderance in the
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TABLE 8-3. Specific Types of Anomalies in
Fanconi’s Anemia Patients

Skin
Generalized hyperpigmentation on trunk, neck, and intertriginous
areas; café-au-lait spots; hypopigmented areas

Bod?;
Short stature, delicate features
Upper limbs
Thumbs—absent or hypoplastic, supernumerary, bifid, rudimentary,
short, low set, attached by a thread, triphalangeal, tubular, stiff, and
hyperextensible
Radii—absent or hypoplastic (only with abnormal thumbs); absent or
weak pulse
Hands—clinodactyly; hypoplastic thenar eminence; six fingers; absent
first metacarpal; enlarged, abnormal fingers; short fingers
Ulnae—dysplastic
Gonads
Males—hypogenitalia; undescended testes; hypospadias; abnormal,
absent testis; atrophic testes; azoospermia; phimosis; abnormal ure-
thra; micropenis; delayed development
Females—hypogenitalia; bicornuate uterus; abnormality, aplasia of
uterus and vagina; atresia of uterus, vagina, and ovary
Other skeletal anomalies
Head and face—microcephaly, hydrocephalus, micrognathia, peculiar
face, bird face, flat head, frontal bossing, scaphocephaly, sloped
forehead, choanal atresia
Neck—Sprengel’s deformity, short, low hairline, webbed
Spine——spina bifida (thoracic, lumbar, cervical, occult sacral), scoliosis,
abnormal ribs, sacrococcygeal sinus, Klippel-Feil syndiome, verte-
bral anomalies, extra vertebrae
Eyes
Small, strabismus, epicanthal folds, hypertelorism, ptosis, slanted, cata-
E racts, astigmatism, blindness, epiphora, nystagmus, proptosis, small iris
ars
Deaf (usually conductive), abnormal shape, atresia, dysplasia, low set,
large, small, infections, abnormal middle ear, absent drum, dimples,
rotated, canal stenosis
Kidneys
Ectopic or pelvic, abnormality, horseshoe, hypoplastic or dysplastic,
absent, hydronephrosis or hydroureter, infections, duplicated,
rotated, reflux, hyperplasia, no function, abnormal artery
Gastrointestinal system g
High arch palate, atresia (esophagus, duodenum, jejunum), imperforate
anus, tracheoesophageal fistula, Meckel’s diverticulum, umbilical
hernia, hypoplastic uvula, abnormal biliary ducts, megacolon,
abdominal diastasis, Budd-Chiari syndrome
Lower limbs
Feet—toe syndactyly, abnormal toes, flat feet, short toes, clubfoot, six
toes, supernumerary toe
Legs—congenital hip dislocation, Perthes’ disease, coxa vara, abnormal
femur, thigh osteoma, abnormal legs
Cardiopulmonary system
Patent ductus arteriosus, ventricular septal defect, abnormality, periph-
eral pulmonic stenosis, aortic stenosis, coarctation, absent lung
lobes, vascular malformation, aortic atheromas, atrial septal defect,
tetralogy of Fallot, pseudotruncus, hypoplastic aorta, abnormal pul-
monary drainage, double aortic arch, cardiac myopathy
Other anomalies
Slow development, hyperreflexia, Bell’s palsy, central nervous system
arterial malformation, stenosis of the internal carotid, small pituitary

NOTE: Abnormalities are listed in approximate order of occurrence within each
category.

Reproduced from Young NS, Alter BP. Aplastic anemia: acquired and inherited. Phil-
adelphia: WB Saunders, 1994:410, with permission.

literature of males who are affected (Table 8-1). In a large
study, 30% of families had two children who were affected,
and consanguinity was found in 10% (17). The literature
reports include 90 families with consanguinity, 325 families
with affected siblings, and ten families with affected cousins.
Mothers of Fanconi’s anemia patients appear to have an
unusual number of miscarriages (30 noted in the literature),
and some of those fetuses were found to have significant phys-
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ical anomalies. Rogatko and Auerbach (18) confirmed a mono-
genic autosomal-recessive pattern by segregation analysis of
the 86 cases in the report of Schroeder et al. (17) and of 88
affected persons in the IFAR.

The heterozygote incidence may be 1 in 300 persons in the
United States and approximately 1 in 100 Afrikaans in South
Africa and Ashkenazi Jews, owing to separate founder effects
(17,19,20). Physical abnormalities were reported in a few par-
ents, suggesting phenotypic changes in heterozygotes (21-23).
Others have suggested that relatives of persons with Fanconi’s
anemia (possible heterozygotes) have an increased incidence of
congenital malformations, particularly genitourinary and hand
malformations (24). Some siblings had characteristic physical
abnormalities without hematologic disease (25-28). (These chil-
dren may subsequently have developed aplastic anemia.) Some
families have children with pancytopenia and normal physical
examinations in addition to children with classic malformations
(29-31). A family was described in 1944 with one child who had
typical Fanconi’s anemia and his brother who had paroxysmal
nocturnal hemoglobinuria, developed lung cancer, and was
proven to have Fanconi’s anemia in 1987 by DEB-induced chro-
mosome breakage (32) (E. C. Gordon-Smith, personal communi-
cation). A cousin, who was related maternally and paternally to
the family, died of leukemia. These variations may reflect
incomplete expression of the homozygous state or may occur in
heterozygotes. Most of the reports predated stress-induced
chromosome breakage studies. The varied expression may indi-
cate allelic but different genetic mutations, interacting mutant
genes, or the influence of the environment on the Fanconi’s ane-
mia phenotype.

Patients with Fanconi’s anemia can now be diagnosed by
chromosome breakage or genetic studies before the onset of
hematologic or malignant complications [preanemic phase (33—
37)]. There are several advantages to presymptomatic diag-
noses. Patients can be told to avoid drugs and other agents that
have been implicated in the development of acquired aplastic
anemia. Prospective analysis leads to a determination of the
actual incidences of aplastic anemia, leukemia, and other malig-
nancies. Factors that lead to the development of these complica-
tions (second hits) may be identified. Early recognition of
Fanconi’s anemia in a family may be used for choices regarding
family planning.

The environment has been invoked to explain the aplastic
anemia in some cases. In one family with three Fanconi’s ane-
mia homozygotes (38), one sister died of aplastic anemia at 16
years of age (according to another sister, she had been treating
skin infections with coal tar). The other two sisters, who were
proven to be Fanconi’s anemia homozygotes by DEB-induced
chromosome breakage, despite only mild hypoplastic anemia
more than 20 years later, developed myelodysplastic syn-
drome (MDS) and oral cancers in their 30s and 40s, respec-
tively (B. P. Alter, unpublished data, 1997). Aplastic anemia
developed in some Fanconi’s anemia patients after viral ill-
nesses, hepatitis, and tuberculosis (30,31,39,40). Cases of Fan-
coni’s anemia have been reported in which the patient
received chloramphenicol before the onset of aplastic anemia
(21,41-44). These infectious or drug-related cases suggest a
role for the environment in the development of bone marrow
failure. Reports of other families in whom siblings had the
onset of pancytopenia at the same age suggest additional
genetic components (17,39,45,46). Thus, the exact roles of
genetics and environment are not yet clarified.

LABORATORY FINDINGS
The blood counts of patients often reveal thrombocytopenia or
leukopenia before pancytopenia, which is usually mild or mod-
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Figure 8-4. Peripheral blood from a patient with Fanconi’s anemia.
Note anisocytosis, macrocytes (arrows), thrombocytopenia, and neu-
tropenia. (Courtesy of Dr. Gail Wolfe. From Alter BP. The bone marrow
failure syndromes. In: Nathan DG, Oski FA, eds. Hematology of
infancy and childhood, 3rd ed. Philadelphia: WB Saunders, 1987:159—
241, with permission.)

erate initially; severe aplasia eventually develops in most cases.
Even in the Fanconi’s anemia patient with normal blood counts
(the preanemic, or the treatment-responsive patient), erythro-
Cytes are macrocytic, with mean cell volumes (MCVs) that are
usually greater than 100 fL. The blood smear shows large red
blood cells (RBCs) with mild poikilocytosis and anisocytosis, as
well as a paucity of platelets and leukocytes, if the numbers of
these components are reduced (Fig. 8-4). Eventually, all three
cell lines may fail.

At the aplastic stage, the bone marrow is hypocellular and
fatty, with few hematopoietic elements and a relative increase,
which is identical with that found in the marrow of patients
with acquired aplasia, in lymphocytes, reticulum cells, mast
cells, and plasma cells. In early Fanconi’s anemia, areas of
hypercellular marrow may be evident, but these disappear as
aplasia progresses (9).

Erythropoiesis in the Fanconi’s anemia patient is character-
ized as stress erythropoiesis and is associated with the produc-
tion of erythrocytes with fetal characteristics, as in patients who
have acquired aplastic anemia—spontaneously or after marrow
transplantation—during recovery (47,48). The features of this
fetal-like erythropoiesis, which occurs during stress and is
present in preanemic, anemic, and remission-stage Fanconi’s
anemia patients, include macrocytosis, increased fetal hemoglo-
bin (HbF) (by alkali denaturation and Kleihauer-Betke acid elu-
tion), and presence of the i antigen. These features have also
helped to identify nonanemic, affected siblings of known
patients. The HbF is distributed unevenly, not clonally, and no
concordance of the various fetal-like features exists at the level
of single cells (49). The level of HbF or degree of macrocytosis
does not provide any prognostic information.

RBC lifespan may be slightly short, but hemolysis is not a
major component of the anemia. Some patients with apparently
short RBC lifespan may have had blood loss that was associated
with thrombocytopenia. Ferrokinetic studies suggest that most
patients have a component of ineffective erythropoiesis in addi-
tion to relative marrow failure. Dyserythropoiesis was noted in
the marrow erythroblasts in some cases, with fragmentation
and multinuclearity (21,40,50). Bone marrow imaging with
technetium-99m sulfur colloid showed paradoxical and irregu-
lar tracer distribution in Fanconi’s anemia that was distinct
from the uniform reduction seen in acquired aplastic anemia

(51). This may be related to the varied and irregular onset of
aplasia in Fanconi’s anemia patients. RBC enzymes have been
decreased, increased, or normal in several contradictory studies
(37,52-54); the variable results may reflect the heterogeneity of
Fanconi’s anemia.

The small stature of Fanconi’s anemia patients was ascribed
to growth hormone (GH) deficiency in 22 patients in whom GH
was reported to be measured (39,55-71), whereas six patients
were found not to be GH deficient (59,72-74). Treatment with
GH led to increased growth without hematologic improvement
in 12 of 15 GH-deficient patients. In some families, GH defi-
ciency and Fanconi’s anemia segregated independently (64,65).
In a study of patients in the IFAR (self-selected for participation,
and perhaps biased toward short stature), 44% of patients had a
subnormal GH response to stimulation, and 36% of patients
were hypothyroid (75). Three patients were treated with recom-
binant GH, one of whom died from acute myelogenous leuke-
mia. It is thought that the frequency of leukemia in patients
with other risk factors that predispose them to leukemia is
probably not increased further by GH treatment (76,77),
although the use of GH replacement in Fanconi’s anemia still
warrants careful consideration.

Chromosome Breakage. The characteristic laboratory find-
ing consists of chromosome aberrations, which are seen most
easily in metaphase preparations of phytohemagglutinin-
stimulated, cultured, peripheral blood lymphocytes. These
reveal breaks, gaps, rearrangements, exchanges, and endoredu-
plications (Fig. 8-5), which are seen in less than 10% of the cells
from normal persons but in much higher proportions in cells
from Fanconi’s anemia homozygotes (78-84). These features are
seen infrequently in direct preparations of bone marrow cells,
perhaps because cells with significant abnormalities may divide
slowly or may not survive in vivo (81,85-87). Cultured skin
fibroblasts also have abnormal chromosomes (79,80,82). It is
thought that the spontaneous aberrations that are seen in cul-
tured blood lymphocytes or fibroblasts may be artifacts of cul-
ture that are induced by unknown factors in the medium.
Because marrow studies are usually direct or cultured only
briefly, these artifacts may not appear. The abnormal lympho-
cyte chromosomes have no relation to any hematologic find-
ings, and variations in the proportions of abnormal cells or in
the number of breaks per cell do not correlate with the clinical
course. Furthermore, spontaneous breaks are sometimes absent
in bona fide Fanconi’s anemia cases (12). Similar spontaneous
chromosomal changes have been reported in Bloom’s syn-
drome and ataxia-telangiectasia (88).

Cells from Fanconi’s anemia patients are sensitive to onco-
genic agents, such as simian virus 40 viral transformation
(89), ionizing radiation (90), and alkylating agents (91). These
agents damage DNA and produce significantly increased
numbers of chromosomal aberrations in Fanconi’s anemia
cells. The chemicals that are used in several laboratories
include DEB, nitrogen mustard, mitomycin C (MMC), cyclo-
phosphamide, and platinum compounds (91-96). Homozy-
gotes are diagnosed based on an amplification of several
times the rate of chromosomal aberrations, compared to the
baseline spontaneous rate. The cited agents do not result in .
increased breakage in the cells of patients with non-Fanconi’
anemia chromosome breakage syndromes. In addition, cell
of patients with Bloom’s syndrome show increased siste
chromatid exchange after treatment with 5-bromodeoxyuri
dine, whereas Fanconi’s anemia patients’ cells do not (97). §
The chromosome breakage rate in Fanconi’s anemia heterozy- §
gotes overlaps with the normal range and is not diagnostic of §
the carrier state.
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Figure 8-5. Cytogenetic findings in a patient with Fanconi’s anemia. A: No clastogen. B: After culture
with diepoxybutane. (From Auerbach AD, Adler B, Chaganti RS. Prenatal and postnatal diagnosis and car-
rier detection of Fanconi anemia by a cytogenetic method. Pediatrics 1981;67:128-135, with permission.)

Although most patients had multiple chromatid breaks and
exchanges in most of their peripheral blood lymphocytes, 10%
of the patients reported by Auerbach and Alter (98) had breaks
in only 10% to 40% of their DEB-treated lymphocytes. Clonal
results have been reported by others as well (99). These patients
can be diagnosed, because the number of breaks per cell with
breaks is still high. In addition, fibroblasts show breaks in a con-
sistent and nonclonal manner. Molecular explanations have
now been provided for some of these cases of somatic mosa-

. icism (see the section Somatic Mosaicism in Fanconi’s Anemia).

Another approach to the diagnosis of Fanconi’s anemia
through the use of alkylating agents involves flow cytometry
rather than a count of chromosomal aberrations. Treated cells
fail to divide, but undergo DNA replication and accumulate in
the G, phase of the cell cycle, where they are detected because
of the increased amount of DNA per cell (100-104).

Prenatal diagnosis has been performed by examination of fetal
amniotic fluid cells or chorionic villus specimens (CVS) for
increased chromosome breaks (98,105,106). In one series, 14
samples were obtained by CVS, three of which had increased
spontaneous and DEB-induced breaks (98). In the same series, 7
of 46 fetuses that were studied by amniocentesis also had
increased breaks by both assays. One false-negative was
obtained by CVS, with no confirmatory amniocentesis sample.
In the positive cases, the cultured cells also grew more slowly.
Three cases were also examined using fetal blood that was
obtained prenatally, primarily (107) or to confirm an abnormal
CVS or amniotic fluid result (108,109). Of the affected cases,
only three had physical anomalies, which further supports the

- suggestion that a large proportion of Fanconi’s anemia homozy-

gotes do not have malformations. Spontaneous and clastogenic
stress tests also suggested Fanconi’s anemia prenatally in two
cases in which the fetuses were not known to be at risk for Fan-
coni’s anemia but in which cytogenetic studies were performed
for other reasons (108,110). Prenatal testing can be done by
mutation analysis in appropriate families (see the section Cellu-
lar Phenotype).

The laboratory evaluation of patients in whom Fanconi’s
anemia is suspected should include complete blood counts,
RBC size analysis, and HbF measurement. Skeletal radio-

graphs and renal ultrasonography are useful. The usual diag-
nostic test ascertains chromosome breakage rates after clastogenic
stress. This test has identified Fanconi’s anemia homozygosity
as the reason for physical anomalies in patients who were not
anemic at the time (33-35) and led to the diagnosis of Fan-
coni’s anemia in patients with aplastic anemia who lacked
malformations (105,111).

PATHOPHYSIOLOGY

The relationship between birth defects, hematopoietic failure,
increased risk of malignancies, chromosome breakage, and DNA
repair remains to be elucidated. In utero, the development of
hematopoiesis and the organs that are most frequently abnormal
in Fanconi’s anemia occurs at approximately the same time (at 25
to 34 days of gestation), and a common toxic insult has been
invoked (46). The Fanconi’s anemia genotype may make
homozygotes more susceptible to agents that can cause acquired
aplastic anemia in normal persons. The oncogenic compounds
that damage DNA in vitro may also be toxic it vivo.

Cellular Phenotype. Fanconi’s anemia cells have several
other cellular phenotypic abnormalities, which are summarized
in Table 8-4, in addition to cross-link sensitivity; a detailed
description of these studies is beyond the scope of this chapter.
Many of these cellular assays have been performed on cells from
multiple complementation groups (see section on Complementa-
tion Groups). Accordingly, it remains unclear whether these cellu-
lar abnormalities correspond to all Fanconi’s anemia
complementation groups or to only a subset. Most of the abnor-
malities that are described for Fanconi’s anemia cells may be
epiphenomena and may not relate directly to the primary celiular
defect in each complementation group. A true understanding of
the primary cellular defect in Fanconi’s anemia, such as DNA
repai, cell cycle regulation, or prevention of apoptosis, may ulti-
mately result from studies of cloned proteins (see the section Fan-
coni’s Anemia Genes).

Several lines of evidence suggest that Fanconi’s anemia
cells have an underlying molecular defect in cell cycle regula-
tion. First, the cells display a cell cycle arrest with 4N DNA
content that is enhanced by treatment with chemical cross-
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TABLE 8-4. Cellular Abnormalities in Fanconi’s Anemia

Feature References

Spontaneous chromosome breaks 78-84
Sensitivity to cross-linking agents 91-96
Prolongation of G, phase of cell cycle 100,112
Sensitivity to O,

Poor growth at ambient O, 113

Overproduction of O, radicals 114

Deficient O, radical defense 115

Deficiency in superoxide dismutase 116,117
Sensitivity to ionizing radiation during G, 118
Overproduction of tumor necrosis factor-o; 19
Direct defects in DNA repair :

Accumulation of DNA adducts 120

Defective repair of DNA cross-links 121
Hypermutability (by deletion) 122
Increased apoptosis 123-125
Abnormal induction of p53 124,126
Intrinsic stem cell defect

Decreased colon Frowth in vitro 127-133

Decreased gonadal stem cell survival 134

Adapted from D’Andrea AD, Grompe M. Molecular biology of Fanconi anemia:
implications for diagnosis and therapy. Blood 1997;90:1725-1736.

linking agents (100,112). Second, the cell cycle arrest and
reduced proliferation of Fanconi’s anemia cells can be par-
tially corrected by overexpression of a protein called SPHAR, a
member of the cyclin family of proteins (136). Third, caffeine
abrogates the G, arrest of Fanconi’s anemia cells (124). Consis-
tent with these results, caffeine constitutively activates the
cyclin-dependent kinase cdc2 and overrides a normal G, cell
cycle checkpoint in Fanconi’s anemia cells, Finally, the FANCC
protein (see below) binds to cdc2, suggesting that the Fan-
coni’s anemia complex may be a substrate or modulator of the
cyclin B~cdc2 complex (137).

Fanconi’s anemia cells also have an underlying defect in
DNA repair. The cells are sensitive to DNA cross-linking agents
and ionizing radiation, which suggests a specific defect in the
repair of cross-linked DNA or double-strand breaks (138). DNA
damage results in a hyperactive P53 response, which suggests
the presence of defective repair yet intact checkpoint activities
(124). Fanconi’s anemia cells also have a defect in the fidelity of
nonhomologous end joining and an increased rate of homolo-
gous recombination (139-141). Based on these extensive pheno-
typic defects, it has been hypothesized that Fanconi’s anemia

results from an underlying molecular defect in cell cycle regula-
tion or DNA repair.

Hematopoietic Defects. Decreased bone marrow short-term
and long-term hematopoietic growth was observed by several

groups (127-133). Colony growth was improved but not nor-
malized in some cultures with added stem cell factor (SCF)
(131). Production of interleukin (IL)-6 and granulocyte-macro-
phage colony-stimulating factor (GM-CSF) was decreased in
long-term cultures (142). Although one report suggested that
nonanemic patients had decreased colonies in vitro (129), we
found a relation between erythroid colony growth and hemato-
logic status in vivo, with better growth in those patients whose
blood counts were closer to normal (130). From this, we devel-
oped a clinical hematologic classification scheme:

1. Severe aplastic anemia on transfusions.

2. Severe aplastic anemia on androgens, but not responsive on
transfusion.

. Severe or moderate aplasia, responsive to androgens.

. Severe or moderate aplasia, about to start treatment.

. Stable, with mild cytopenias, high MCV, and high HbF.

. Normal hematology.

N W

Complementation Groups. Hybrid cells that were formed
from Fanconi’s anemia and normal cells resulted in correction
of the Fanconi’s anemia breakage (143-147). Other cell fusion
studies that used cell lines from a variety of Fanconi’s anemia
patients led to the demonstration of at least two complementa-
tion groups, which involved at least nine patients (145-147),
although only a single group was found in five Japanese
patients (148). Duckworth-Rysiecki et al. also found two com-
plementation groups (144).

At least eight distinct complementation groups (A, B, C, D1,
D2, E, F, G) have now been identified using somatic cell fusion
techniques and complementation of MMC sensitivity in fused
hybrid cells (149-151). These complementation groups are shown
in Table 8-5. Several approaches are now available for the rapid
diagnosis and assignment of complementation groups to patients
(see the section Implications for Diagnosis and Complementation
Group). Some differences in the clinical severity of Fanconi’s ane-
mia are also now apparent, when comparing different comple- *
mentation groups or specific mutations within a complementation ;
group. In particular, null mutations appear to be more severe than
those mutations that lead to an altered protein (152).

Fanconi’s Anemia Genes. Using functional complementation
of the eight Fanconi’s anemia groups, six genes have now been
cloned: FANCA, FANCC, FANCD2, FANCE, FANCE, and
FANCG (153~158). The FANCA and FANCD2 genes were also
cloned by a positional approach (155,159). The FANCG gene is
homologous to the previously described XRCC9 gene (160). The
FANCD complementation group is genetically heterogeneous,
with at least two genes (FANCD1 and FANCD?2) in this group
(155). Characteristics of the six cloned genes are summarized in

TABLE 8-5. Fanconi’s Anemia Complementation Groups and Genes

Genomic DNA Complementary
Gene Locus (kb) DNA (kb) Exons Protein (kd)  Amino Acids  Percent of Patients

FANCA 16G24.3 80 5.5 43 16 4 i
EQE(C:E N/g\ 80 5. 43 _3 1 5~5 Qgrperoxmately 70

9922.3 80 1.8 14 63 558 Approximately 10
FANCD1 13q12.3 70 11.4 27 384 3418 Ralf()e Y
FANCD?2 3p25.3 80 4.4 44 162 1451 Rare
FANCE 6p21-22 15 1.6 10 60 536 Approximately 10
'F:QHEE 11p15 — 1.1 1 42 374 Rare

9p13 — 25 14 70 622 Approximately 10

N/A, not available, not mapped or cloned,




FANCC 1
Exon 1 Exon 4 Exon 6
Q13X IVS4+4 AT R185X
322delG

Nuclear Localization

Signal (NLS)
FANCA
Leucine Zipper
FANCG 1
135 1 163
L142pP
FANCD2
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$126G R302W Q320X

} f

E6X Y109X

}

Q119X

FANCE 1

Table 8-5. The availability of these gene sequences and their
encoded proteins has substantially altered the diagnostic and
subtyping approach to the disease. _

Five of the seven cloned Fanconi’s anemia proteins have
little or no homology to other known proteins in genetic data-
bases (Fig. 8-6). However, absence of any one of these pro-
teins, by biallelic mutation of the corresponding gene, results
in the common clinical and cellular abnormalities in Fan-
coni’s anemia. Accordingly, it was suggested that these six
proteins interact in a common biochemical pathway (166),
and recent studies have demonstrated that this hypothesis
may be correct (Fig. 8-7). Several of the proteins (including
FANCA, FANCC, FANCE, FANCEF, and FANCG) appear to be
subunits of a large multisubunit protein complex in the
nucleus of normal cells (157,167~173). This protein complex
appears to be a ubiquitin ligase, which is capable of modify-
ing the downstream, Fanconi’s anemia protein, FANCD2
(174). Alternatively, the FA complex may regulate the activity
of a ubiquitin ligase. When a normal cell is exposed to DNA
damage, the Fanconi’s anemia protein complex modifies the
FANCD?2 protein by monoubiquitination, thereby targeting
this protein to DNA repair foci within the nucleus. Ubiquitin
is a 76 amino-acid peptide that is added posttranslationally to
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Figure 8-6. Schematic representation of the six cloned Fanconi’s anemia proteins. A few patient-derived
mutations are indicated. These mutations were identified by systematic mutational analysis of the FANCC
(154,161,162), FANCA (163,164), and FANCG genes (165). Fewer patient-derived mutations have been
detected for the FANCE (156), FANCF (157), and FANCD2 (155) genes.

regulated proteins. Monoubiquitination of the FANCD2 pro-
tein does not alter the stability of the protein but instead
appears to direct its translocation to the DNA repair foci in
the nucleus. Interestingly, these DNA repair foci contain other
proteins that are known to be involved in DNA repair, such as
BRCA1, RAD51, and NBS (174-176). The recent discovery
(176a) that FANCD1 is caused by bialleleic mutations on
BRCAZ2 links the Fanconi genes, BRCA1, and BRCA2 in a
common pathway. Moreover, other recent evidence (176b)
links the Fanconi anemia and ataxia telangiectasia pathways.
The ATM (ataxia telongiectasia mutated) gene encodes an
ionizing radiation-activated kinase that phosphorylates the
FANCD2 protein, which is monoubiquitinated by the FANC
(A, C, E, F, and G) protein complex. Loss of any of the proteins
in the Fanconi pathway leads to spontaneous chromosome
breakage, which is increased by cellular exposure to MMC or
DEB. These studies suggest that the six cloned Fanconi’s ane-
mia proteins interact in a novel biochemical pathway that is
activated in response to DNA damage. Disruption of this
pathway leads to the characteristic clinical and cellulgr abnor-
malities that are observed in Fanconi’s anemia. Whether there
are other functions of the Fanconi’s anemia proteins outside
the context of this biochemical pathway remains unknown.
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Cytoplasm

Figure 8-7. Interaction of the FA proteins in a cellular pathway. The FA
proteins (A, C, E, F, and G) bind in a functional nuclear complex. This
multisubunit complex appears to function as an enzyme. On activation of
this complex by DNA damage, the complex enzymatically modifies
(monoubiquitinates) the downstream D2 protein. The activated D2 pro-
tein is thereby targeted to nuclear foci that are required for DNA repair.
These foci contain many proteins (i.e., BRCA1, NBS, RAD51) that are
known to play a role in DNA repair and in the maintenance of chromo-
some stability. Defects in BRCA2 are observed in FANCD1. The role of
BRCA2 in this pathway is uncertain. Disruption of the FA pathway leads to
the characteristic cellular and clinical abnormalities that are observed in
Fanconi’s anemia. (Adapted from Garcia-Higuera I, Taniguchi T, Ganesan
S, et al. interaction of the Fanconi anemia proteins and BRCA1 in a com-
mon pathway. Mol Cell 2001;7:1-20, with permission.)

Implications for Diagnosis and Complementation Group.
Several studies have provided mutational analysis of patients,
including those patients in group C (162,177), group A
(163,178), and group G (165). While FANCC is a relatively rare
group (Table 8-5), there is a common mutant allele for FANCC,
IVS4+4 A to T, which is prevalent in Ashkenazi Jews (162), with
a carrier frequency of approximately 0.9% in this population
(20). FANCA is the most common group. The FANCA gene is
large, encompassing 43 exons, and there are a wide range of
mutant alleles, thereby making direct mutational screening of
FANCA patients costly and inefficient. There is an increased fre-
quency of group G in the German population, as it is associated
with a German mutant allele (165). In some ethnic backgrounds,
Fanconi’s anemia can be diagnosed by direct mutational screen-
ing of specific founder mutations.

Knowledge of the specific genotype of a patient is often
informative. For instance, for FANCC, the IVS4+4 A to T mutant
allele is associated with a more severe phenotype, whereas the
delG322 mutation may have a relatively mild phenotype (179).
Disease severity may also depend on genetic background, how-
ever, as Japanese patients with the IVS4+4 A to T mutation have
a comparatively mild phenotype (180).

Although direct mutational screening is not always practical,
complementation group assignment is relatively easy and cost
effective. Cell lines and primary cells from known Fanconi’s
anemia patients can be subtyped by using a combination of ret-
roviral complementation with the six cloned Fanconi’s anemia
complementary DNAs (cDNAs) and by immunoblotting with

tion analysis suggests that FANCA patients have a relatively

antisera that are specific to the six proteins (181). Complementa-

mild phenotype, compared to patients in group C or group G
(152). Group typing may be useful in predicting disease severity
or in guiding the relative urgency of risky clinical interventions,
such as unrelated BMT. Group assignment is a necessary pre-
condition for the use of gene therapy (135).

Because the six cloned FA proteins appear to interact in a
common pathway (Fig. 8-7), it is theoretically possible to screen
the downstream events in this pathway (i.e., the monoubiquiti-
nation of the FANCD2 protein) as a measure of the integrity of
the pathway. Whether such a screening test will replace the DEB
test for Fanconi’s anemia diagnosis remains unknown.

Somatic Mosaicism in Fanconi’s Anemia. The phenomenon
of somatic reversion for Fanconi’s anemia has recently been
described. Somatic reversion results when a mutant gene
reverts to a wild-type gene (or to a functionally wild-type
gene), thus encoding a functional Fanconi’s anemia protein.
Reverted cells have a selective growth advantage over mutant
cells. Approximately 15% of Fanconi’s anemia patients have
somatic mosaicism in their peripheral blood (182,183). A mix-
ture of MMC-sensitive and MMC-resistant cells is found in
these samples. Mitotic recombination or compensatory frame-
shifts were shown to be molecular mechanisms of somatic
reversion (184). Somatic mosaicism may make the diagnosis of
Fanconi’s anemia difficult, because of false-negative chromo-
some breakage studies. If Fanconi’s anemia is strongly sus-
pected in a patient, despite inconclusive breakage studies in
peripheral blood, a definitive test can be performed by chro-
mosome breakage studies of primary skin fibroblasts or by
direct Fanconi’s anemia gene mutational screening.

The high percentage of patients with somatic mosaicism
indicates a strong selective advantage for cells that have lost the
Fanconi’s anemia phenotype. In principle, if the somatic rever-
sion occurs in a pluripotent hematopoietic progenitor cell, then
these corrected cells could give rise to clonal repopulation of the
bone marrow. This raises the possibility that gene therapy in
Fanconi’s anemia may be aided by in vivo selection. At this time
it is unclear whether any special physiologic circumstances are
required for this selection to occur. The high incidence of
somatic reversion also suggests that many mutant Fanconi’s
anemia genes have frameshift mutations. These mutations may
be “corrected” by new mutations that correct the open reading
frame of the Fanconi’s anemia gene.

Somatic mosaicism may also cause some complications for
Fanconi’s anemia patients, especially if the reversion occurs in
a more differentiated T lymphocyte. A high incidence of graft
rejection has been noted in BMT of mosaic patients (185).
Because of their increased sensitivity to bifunctional alkylat-
ing agents, Fanconi’s anemia patients typically receive a much
less aggressive ablative treatment before BMT. If the recipient
patient has somatic mosaicism (particularly in T cells), some
endogenous cells may be resistant to the ablative regimen and
may cause graft rejection. Further studies are required to con-
firm this hypothesis.

Gene Therapy for Fanconi’s Anemia. For gene therapy, bone
marrow from a Fanconi’s anemia patient of known group can
be harvested, transduced ex vivo with a retroviral or adenovi-
ral construct that contains the corresponding wild-type cDNA, |
and reinfused into the recipient. In principle, the genetically
corrected stem cells and early progenitor cells should have a |
selective advantage in vivo, which allows for a clonal or oligo- @
clonal reengraftment of the bone marrow and a reconstitution
of normal hematopoiesis. The restoration of the Fanconi’s ane- |



ia pathway by retroviral transduction of the missing func-
onal Fanconi’s anemia protein may provide a convenient
creening test for the efficacy of gene therapy in vitro (Fig. 8-7).
tudies that evaluated clinical gene therapy protocols for Fan-
oni’s anemia have been described (186).

Mouse models have provided a useful, albeit nonideal,
odel for Fanconi’s anemia gene therapy. At present, there
re FANCC and FANCA knock-out mouse models for Fan-
oni’s anemia (134,187,188), all of which exhibit a “partial”
henotype. These mice have normal development and orga-
~nogenesis and no obvious cancer predisposition, but they all

have decreased fertility. Although the baseline hematopoie-

sis of the mouse models is relatively normal (189,190), the
primary FANCC (-/-) cells undergo enhanced chromosome
1 breakage and decreased survival on exposure to MMC. Sys-
i tematic comparisons of primary bone marrow cells from

FANCC (-/-) and FANCC (+/+) mice were performed (191).
In a competitive repopulation assay in an irradiated, normal
mouse model, FANCC (+/+) cells selectively outgrew
FANCC (-/-) cells, especially on serial transplantation.
When wild-type bone marrow cells were transplanted into
an unconditioned FANCC (-/-) recipient, the wild-type cells
displayed a growth advantage that was enhanced with MMC
conditioning in vivo. In other studies, FANCC (-/-) mice
were shown to have decreased numbers of CD34* cells,
which suggests a defect in the differentiation of CD34- to
CD34* cells (191,192).

Gene therapy for Fanconi’s anemia has several theoretical
advantages over conventional therapies. Fanconi’s anemia
cells that have been corrected by retroviral transduction have
a survival advantage over untransduced cells. Retroviral
transduction of FANCC or FANCA cDNA improves the clono-
genic survival of human FANCC or FANCA mutant bone mar-
row cells (193,194) or murine FANCC (~/-) bone marrow cells
(186). Taken together, these studies suggest that a gene ther-
apy approach to Fanconi’s anemia could potentially result in a
competitive advantage of corrected cells and an in vivo correc-
tion of hematopoiesis. Moreover, this competitive engraftment
could be enhanced by MMC administration in vivo (191). This
is also supported by the observation that the FANCC trans-
gene was only detectable in a patient who was given trans-
duced CD34* cells after radiation therapy for a concurrent
malignancy (186). The frequent finding of somatic mosaicism
of peripheral blood lymphocytes from Fanconi’s anemia
patients further supports a model of in vivo selection of cor-
rected cells. In addition, constitutive overexpression of the
Fanconi’s anemia proteins does not have deleterious effects on
hematopoietic cell growth or colony formation. In fact, a trans-
genic mouse expressing FANCC constitutively has a slight
increase in colony-forming unit-erythrocyte (CFU-E) colony
cells. Also, Fanconi’s anemia cell lines that are complemented
with the FANCA, FANCG, and FANCC ¢cDNA and express
high levels of the corresponding Fanconi’s anemia protein
have normal growth in culture.

Despite these theoretical advantages, gene therapy for Fan-
coni’s anemia also carries various disadvantages and risks. Gene
therapy is limited by the relatively poor retroviral transduction
efficiency of hematopoietic stem cells with existing retroviral
and lentiviral supernatants. Functional complementation with
the FANCC ¢DNA could theoretically “rescue” a premalignant
cell and thereby enhance leukemic transformation for the Fan-
coni’s anemia patient. This may be a higher risk for a patient
with a stable chromosomal (clonal) abnormality of the bone
marrow cells. Expression of the FANCC ¢DNA in a differenti-
ated lymphocyte could potentially create T-cell mosaicism of the
Tecipient. T-cell mosaicism may decrease the success of bone
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marrow engraftment, if a patient requires a subsequent unre-
lated donor bone marrow transplant. Expression of an exoge-
nous Fanconi’s anemia protein after gene therapy could
theoretically result in an immune response to the foreign antigen
and, subsequently, in graft rejection.

Preimplantation Genetic Diagnosis for Fanconi’s Anemia.
Through preimplantation genetic diagnosis (PGD), parents of
a known Fanconi’s anemia patient with a known group and
genotype can use in vitro fertilization to generate multiple sib-
ling embryos. By polymerase chain reaction amplification
analysis of cells that are obtained from these embryos, the
embryos can be tested and screened for HLA type (to ensure
that the sibling embryo is a match for the affected child) and
for the Fanconi’s anemia mutations that are carried in the fam-
ily (to ensure that the sibling embryo does not have disease).
PGD has been successfully performed for other genetic dis-
eases, including cystic fibrosis (58) and Lesch-Nyhan syn-
drome (195,196). More recently, PGD was used successfully
for a family with a known FANCC mutation. After the birth of
a normal sibling, the cord blood can be used for transplanta-
tion of the older child who is affected. PGD has been limited
by the reduced viability of reimplanted embryos after genetic
analysis ex vivo and by the absolute requirement for accurate
detection of the two mutant Fanconi’s anemia alleles that are
carried in the family. As stated previously, it is often difficult
to detect the precise mutation in the Fanconi’s anemia gene by
direct mutational analysis, and it is difficult to distinguish
true pathogenic missense mutations from benign base pair
polymorphisms.

Implications for Cancer Diagnostics. Because biallelic germ-
line mutations in a Fanconi’s anemia gene result in cancer sus-
ceptibility in Fanconi’s anemia patients, it is possible that
acquired (somatic) mutations in Fanconi’s anemia genes may
also be oncogenic. A systematic screening of the Fanconi’s
anemia pathway in tumors from cancer patients from the gen-
eral (non-Fanconi’s anemia) population is therefore warranted
(Fig. 8-7). For instance, somatic mutation of an upstream Fan-
coni’s anemia gene may result in loss of a functional Fanconi’s
anemia pathway and subsequent chromosome instability.
Chromosome instability is a common feature of cancer pro-
gression. Whether specific Fanconi’s anemia groups or mutant
alleles within a specific group predispose to a specific cancer
remains untested.

PROGNOSIS

In the past, when patients were diagnosed because they had
already developed aplastic anemia, and when the only treat-
ment was RBC transfusions, 80% of patients were reported to
die within 2 years (197). Almost all patients died within 4 years,
with only rare long-term survivals (198,199). Because diagnoses
can now be made before the onset of clinically significant hema-
tologic or malignant symptoms, survival from the time of diag-
nosis is longer. More reliable information should eventually
emerge from prospective data, in which a large proportion of
patients are identified who have no symptoms.

The cumulative survival of Fanconi’s anemia patients in
the literature is shown in Figure 8-8. In the entire group, the
median predicted cumulative survival is 20 years of age.
However, cases reported in the 1990s had a predicted median
survival of 30 years of age. Those patients who were 1 year of
age or younger had a median survival of 5 years of age, and
those who were 16 years of age or older when Fanconi’s ane-
mia was diagnosed had a median predicted survival of 30
years of age. .
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Figure 8-8. Kaplan-Meier plot of cumulative survival in Fanconi’s anemia
patients. Time is shown as age in years. Lines represent 118 cases that were
reported from 1927 to 1960, 117 cases from 1961 to 1970, 254 cases from
1971 to 1980, 314 cases from 1981 to 1990, and 331 cases from 1991 to
2000. The differences are significant.

Older Patients. Older Fanconi’s anemia men may be small,
with underdeveloped genitalia and abnormalities in spermato-
genesis (200). There are four Fanconi’s anemia men who are
reported to have fathered children (17,201,202); they represent
less than 5% of men who have reached 16 years of age. This per-
centage may be due to underreporting, as well as decreased fer-
tility, which has been noted by several patients (B. P, Alter,
unpublished data).

Older women with Fanconi’s anemia have irregular menses
and early menopause (72,79,201,203). At least 20 Fanconi’s
anemia patients were reported to have been pregnant; 30 preg-
nancies have resulted in 21 living infants (36,79,201,203-213).
Pregnancies occurred at a median age of 23 years (with a range
from 18 to 34 years of age). Transfusions were often necessary
because of worsening of maternal anemia, and cesarean sec-
tions were performed in six cases because of failure of labor to
progress. There were eight miscarriages and four cases of pre-
eclampsia. Nine of the women required RBC transfusions dur-
ing their pregnancies, and six women required platelets. None
of the mothers died during pregnancy, but ten women died at
a median age of 32 years (with a range from 26 to 45 years of
age), with seven women dying from cancer (see the section
Complications) and three women dying from complications of
pancytopenia.

TREATMENT

Androgen Therapy. Shahidi and Diamond (214) reported the
use of androgens in 1959, with improvement in the first six
patients. The response rate was noted to be 75% in the series by
Sanchez-Medal (215) and Najean (216). As with any new ther-
apy, initial enthusiasm must give way to reality, and the
response rate is now estimated at closer to 50%. The first sign of
response is a rise in the reticulocyte count, followed by a rise in
hemoglobin (Hgb) within 1 to 2 months. The white blood cell
count is somewhat slower, and the platelet response, usually
incomplete, may take 6 to 12 months.

Only a few patients were reported to successfully discon-
tinue androgen therapy (often at the time of puberty) and
maintain their blood counts (37,128,205,217-224). Many patients
eventually become refractory to the androgen with which

they are treated, and changing to another androgen only occa-
sionally succeeds in buying more time for the patient. Some
of the complications that are described in the following dis-
cussion develop in older patients, in whom androgens-may
have prolonged life sufficiently for these complications to
appear, or they may have contributed to these developments,

Although some reports suggest that androgens alone are as
effective as androgens that are combined with corticosteroids,
the general recommendation is for a combination of andro-
gens and corticosteroids (216). The growth acceleration of
androgens may be counterbalanced by the growth retardation
of the corticosteroids (225). In addition, corticosteroids may
decrease bleeding at a given platelet count, perhaps by pro-
moting vascular stability (226). The most frequently used
androgen is oxymetholone, an oral 17-alkylated androgen, at
2 to 5 mg/kg/day. When prednisone is also given, it is at 5 to
10 mg every other day. If an injectable androgen is desired
because of decreased risk of hepatotoxicity, the usual form is
nandrolone decanoate, 1 to 2 mg/kg/week, injected intra-
muscularly, with ice packs and pressure applied to prevent
hematomas.

Potential side effects of androgens are obstructive liver
disease, peliosis hepatis, and liver tumors. Patients who
receive androgens should be monitored frequently with liver
chemistries and ultrasonography. If a response occurs, the
drug should be tapered slowly but probably not discontinued
entirely. The only group of patients in whom discontinuation
has been considered routinely are those from South Africa,
who may be a genetically distinct Fanconi’s anemia variant
(227). In most experiences elsewhere, relapses ensue when
androgens are stopped, and subsequent remissions on the
same or different preparations are sometimes elusive.
Although an attenuated androgen, such as danazol, has theo-
retical appeal because of reduced side effects, there is some
concern about its hematopoietic effectiveness. There are only
two reports of its use in Fanconi’s anemia, with a response in
one patient (228,229).

Indications for androgens depend on the degree of cytope-
nia, not solely on the knowledge that the patient has Fanconi’s
anemia. One or more of Hgb below 8 g/dL, platelets less than
30,000/uL, or a neutrophil count of less than 500/uL may war-
rant treatment.

Hematopoietic Stem Cell Transplantation. Reconstitution of
Fanconi’s anemia patients with allogeneic hematopoietic stem
cells offers the potential of a cure for the aplastic anemia and
perhaps cure or prevention of leukemia. However, it does not
prevent and may even accelerate the appearance of other malig-
nancies (see section Solid Tumors). More than 200 transplants
have been performed worldwide, with survival from HLA-
matched siblings almost double that of alternative donors (Fig.
8-9). Although the majority of the reported transplants were
from bone marrow, the use of cord blood is increasing, and
mobilized peripheral blood may be considered.

The outcome was poor in the first marrow transplants from
HLA-matched siblings using the standard aplastic anemia
cyclophosphamide regimen of 100 to 200 mg/kg given over 3to *
4 days (230,231). Several studies showed that a metabolite of
cyclophosphamide is toxic to DNA, which explains the clinical
symptoms of severe mucositis with intestinal malabsorption
and hemorrhages, fluid retention, cardiac failure, and hemor-
rhagic cystitis (92,232,233). Gluckman then introduced a modi-
fied protocol, using a total cyclophosphamide dose of 20 mg/
kg, divided over 4 days, plus 5 Gy of thoracoabdominal radia-
tion (138,233). This protocol became standard and has a cumu-
lative survival probability of approximately 70% (234,235). The
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Figure 8-9. Kaplan-Meier plot of cumulative survival after bone marrow
transplantation for patients with Fanconi’s anemia. Time is shown as
months from transplantation. One-hundred and fifty-one patients were
transplanted from HLA-identical siblings. Forty-eight patients had alterna-
tive donors. (From Gluckman E, Auerbach AD, Horowitz MM, et al. Bone
marrow transplantation for Fanconi anemia. Blood 1995;86:2856-2862,
with permission.)

best predictor of survival was a low number of transfusions
before transplant. Recently, nonmyeloablative regimens have
shown promise, using fludarabine combined with low-dose
cyclophosphamide, for related and unrelated donor transplants
(236,237). One concern is that there may be incomplete mixed
chimerism, with residual Fanconi’s anemia cells that might
have a malignant potential.

The preferred donors for Fanconi’s anemia transplantations
are HLA-matched siblings, who need to be screened with thor-
ough physical examinations, complete blood counts (including
examination of the RBC, MCV, and HbF), and cytogenetic stud-
ies for chromosome breakage, baseline and after culture, with a
clastogenic stress agent, such as DEB. Mutation analysis should
be offered in families with known mutations. In more than one
case, the donor turned out to have Fanconi’s anemia that had
not been diagnosed before transplantation (238). Parents have
an unexpectedly high rate of HLA identity with Fanconi’s ane-
mia patients, only partly accounted for by consanguinity, and
may serve as marrow donors (239,240).

In many instances, no HLA-compatible sibling is found who
can be a marrow donor. Alternative donors include parents (who
may be only haploidentical), other relatives, or unrelated adult
donors; the cumulative survival is approximately 30% (234,241).
Persons with such transplants are particularly at risk for rejection
or graft-versus-host disease. A review from the European group
registry suggested that T-cell depletion reduced acute graft-
versus-host disease but increased the risk of graft failure, thus
leading to no net improvement in survival (241). They reported
predictors of worse outcome, including extensive malformations,
positive cytomegalovirus serology, prior treatment with andro-
gens (which may have been correlated with abnormal liver func-
tion), and female donors. Matched unrelated donors were better
than mismatched related donors (235).

Because umbsilical cord blood contains hematopoietic progen-
itor cells, investigators proposed cryopreservation of these cells
from a non-Fanconi’s anemia sibling who is diagnosed in utero, to
use for later transplantation (242). Fetal cells are obtained by
chorionic villus sampling or amniocentesis, tested for Fanconi’s
anemia homozygosity by using clastogen-induced chromosome
breakage tests or mutation analysis (see the section Cellular Phe-
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notype), and HLA typed by serologic and molecular methods.
Several cases have now been done, with good results when the
donor was related to the patient (228,243). Results from cases that
use unrelated cord donors are not nearly as good as those
obtained in cases in which the donors are siblings (235,244). An
extreme example of the use of placental blood for transplant is
the pregnancy that results from PGD and implantation of one or
more unaffected, HLA-matched blastocysts (see the section Pre-
implantation Genetic Diagnosis for Fanconi’s Anemia).

The incidence of malignancies is increased in Fanconi’s ane-
mia patients (see the section Complications). It is clear that BMT
does not reduce this risk (except for hematologic malignancies);
in fact, the cytoreductive therapy and radiation may increase it.
Cancer of the tongue has been reported in several transplanted
patients (see the section Solid Tumors).

Indications for transplant depend on the type of donor.
Those with an HLA-matched sibling donor might be consid-
ered for transplant when their cytopenias require intervention
(e.g., Hgb <8 g/dL, platelets <30,000/pL, and absolute neutro-
phil count <500/uL). Those for whom an alternative donor is
the only option might benefit from androgens, granulocyte col-
ony-stimulating factor (G-CSF), and even supportive care. Only
those with leukemia or unmanageable cytopenias from aplastic
anemia or MDS might be candidates for unrelated or mis-
matched transplants.

Other Treatment. Supportive care must be provided, as it
should for any patient with aplastic anemia. e-Aminocaproic acid
may be used for symptomatic bleeding, at a dose of 0.1 g/kg
every 6 hours orally (245). No family member should be used as
a blood product donor, until it is decided that a transplant will
not be done (even from an unrelated donor) to decrease the
chance of sensitization. Washed or leukofiltered RBCs should be
used to reduce the risk of reactions and HLA sensitization from
white cells. The possibility of marrow transplantation must be
considered early in the course of the patient’s anemia. Although
the use of androgens and transfusions does not preclude trans-
plantation, the best results are seen in those whose medical com-
plications are minimal. Drugs and chemicals that may be
implicated as causal in acquired aplastic anemia should be
avoided. In addition, medications or substances that interfere
with platelet function (such as aspirin, some antihistamines, non-
steroidal antiinflammatory drugs, glycerol guaiacolate, vitamin
E, and cod liver oil) should not be given to thrombocytopenic
patients. If a severe allergic reaction occurs during a blood trans-
fusion, diphenhydramine (Benadryl) can be used acutely.

Splenectomy has no apparent role in the management of Fan-
coni’s anemia. More than 40 cases were reported to have had this
procedure with no apparent long-term benefit. In some patients,
transient improvement of pancytopenia occurred, but it was at a
time when the bone marrow was not yet hypocellular.

Immunotherapy has no theoretical or factual basis. Although
use of high-dose methylprednisolone (246) was reported rarely
in Fanconi’s anemia, there are unreported instances of several
patients in whom this agent or antithymocyte globulin as well
as cyclosporin A was used without success (B. P. Alter, unpub-
lished data). In fact, approximately 10% of adults who failed to
respond to any of these approaches were shown subsequently
by clastogenic stress-induced chromosome breakage studies to
have previously undiagnosed Fanconi’s anemia (A. D. Auer-
bach and N. S. Young, unpublished data).

Lithium was reported to improve the blood counts in two of
five Fanconi’s anemia patients, presumably those whose mar-
row reserve was still present (248).

Hematopoietic growth factors may have a limited role in the
future management of Fanconi’s anemia patients. GM-CSF was
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TABLE 8-6. Complications in Fanconi’s Anemia

Myelodysplastic
All Patients Leukemia Syndrome Solid Tumor Liver Tumor

Number of cases 1206 103 74 59 34
Percent of total 100 8.5 6.1 4.9 2.8
Male to female ratio 1.24 1.51 1.06 0.37 1.43
Age at diagnosis of Fanconi’s anemia (yr) X

Mean 8.4 10.4 11.5 13.2 9.4

Median 7 9 9.5 9.5 7

Range 0-48 0.13-28 0.3-43 0.1-44 3-48
Age at complication (yr)

Mean — 14.5 15.9 234 16.1

Median — 13.8 14 26 13

Range — 0.13-29 1.843 0.3-45 6-48
Number of reported deceased 455 73 37 35 27
Percent of reported deceased 38% 71% 50% 59% 79%
Projected median survival (yr) 20 16 22 31 14

found to produce transient increases in neutrophil counts with-
out effects on Hgb or platelets and without induction of acute
leukemia or cytogenetic clones at up to 15 months (249,250).
Results were similar with G-CSF, which also increased neutro-
phils but did not impact on Hgb or platelets (251,252). However,
clonal cytogenetics (including monosomy 7 in three cases) or
increased myeloblasts, or both, were observed in 4 out of 16
patients during or after G-CSF treatment. These complications
may be manifestations of the natural history of Fanconi’s ane-
mia (see the section Complications). The use of G-CSF or GM-
CSF should be restricted to. patients with severe neutropenia
and risk of serious infections and should be monitored with fre-
quent blood counts, bone marrow examinations, and bone mar-
row cytogenetic studies.

COMPLICATIONS

The in vitro data regarding defects in DNA repair and cellular
damage in Fanconi’s anemia suggest that it might be a prema-
lignant condition, which is borne out by the in vivo observa-
tions. Approximately 200 cases have been reported with
leukemia or solid tumors—an overall incidence of approxi-
mately 15%. Because this incidence reflects biased reporting of
interesting cases, the true figure may differ from this estimate.
More than 100 patients were reported with leukemia, more than
30 were reported with liver tumors, and approximately 60 were
reported with other cancers (Table 8-6). German observed that
cancer in Fanconi’s anemia patients has been reported only
since the mid 1960s and suggested that androgen therapy,

which began in the early 1960s, allowed patients to survive long
enough to develop the malignancy for which they were at risk
(253). He also suggested that androgens might be implicated in
the cause of these malignancies. Many patients who never
received androgens developed leukemia or cancer, however,
and, thus, the role of androgens is not relevant except, perhaps,
for liver tumors.

The finding of a single gene for Fanconi’s anemia (heterozy-
gosity) was thought to be sufficient to confer a risk of malignancy.
Garriga and Crosby (254) reported an increased incidence of leu-
kemia in Fanconi’s anemia families, and Swift (239,255) found a
predisposition to cancer in heterozygotes. Subsequently, these
analyses were extended from the original eight families to 25
families by Swift et al. (256) and to nine families by Potter et al.
(257); neither study found an increase in cancer in Fanconi’s ane-
mia families. [Another disorder that was thought to be present at
increased incidence in Fanconi’s anemia heterozygotes is diabe-
tes mellitus (258,259).] The earlier and perhaps erroneous conclu-
sions regarding cancer were attributed to small numbers,
incorrect assignment of Fanconi’s anemia heterozygotes, and
biased selection. The cancer risk of heterozygotes should be clari-
fied in the near future, because heterozygote status can be con-
firmed with mutation analysis.

Leukemia. Leukemia has been reported in more than 100
cases, representing almost 10% of Fanconi’s anemia patients in |
the literature (Table 8-7 and Fig. 8-10). In a single series of 44 &
patients, nine patients developed leukemia (20%), and five i

TABLE 8-7. Leukemia in Fanconi’s Anemia

Leukemia Male Female All Patients References
Acute lymphocytic leukemia 3 2 5 67,262-265 i
AML, unspecified 23 14 37 21,217,224,236,260,266-286 ‘
AML M1, acute myelocytic, without maturation 1 1 2 287,288 b i
AML M2, acute myelocytic, with maturation 2 2 4 279,289,290
AML M3, acute promyelocytic 0 0 0 —_
AML M4, acute myelomonocytic 12 8 20 17,81,84,291-305
AML M5, acute monocytic 6 4 10 40,284,306-312
AML M6, erythroleukemia 5 2 7 59,87,217,309,313,314
AML M7, acute megakaryocytic 1 0 1 315
AML, acute nonlymphocytic 1 5 6 243,312,316-318
Other acute leukemia 8 3 1 17,43,86,260,311,319-322
Total 62 41 103 —

AML, acute myeloid leukemia.
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Figure 8-10. Age at diagnosis of cancer in Fanconi’s anemia in 94
patients with leukemia, 60 patients with solid tumors, and 28 patients
with liver tumors. Age at complication was not reported for all patients
with those diagnoses.

more patients were preleukemic (260). In 25% of those patients
with leukemia, the diagnosis of Fanconi’s anemia was made
only during the evaluation for leukemia. Approximately one-
third of the patients had received androgens, which indicates
the severity of preexisting aplastic anemia. Because two-thirds

;. of those with leukemia had not received androgens, androgens
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are an unlikely cause of leukemia. At least two patients pre-
sented with acute myelomonocytic leukemia, and they were
treated with bone marrow transplants. They developed toxicity
from the preparation, and the diagnosis of Fanconi’s anemia
was made retrospectively, after they were found to have
increased chromosome breakage (261).

The characteristics of patients with Fanconi’s anemia and
leukemia are compared to the characteristics of the total group
and those with other malignancies in Table 8-6. The male to
female ratio is 1.5:1.0. The diagnosis of Fanconi’s anemia was
made at a median age of 9 years in those who eventually devel-
oped leukemia, which is significantly older than the diagnosis
at a median of 7 years of age in those who did not develop leu-
kemia. Leukemia was diagnosed at a median of 14 years of age
(with a range from 0.1 to 29.0 years of age). Sixteen patients
were over 16 years of age at the time of diagnosis of Fanconi’s
anemia, and, in ten of these patients, Fanconi’s anemia was first
diagnosed when the patients presented with leukemia.

Because the most common leukemia in children is lympho-
cytic, it is noteworthy that, until 1989, all leukemias reported in
Fanconi’s anemia were myeloid. Five cases of acute lymphocytic
leukemia (ALL) have now been reported, although most of the
leukemias are myeloid (Table 8-7). Because several patients were
discussed in more than one publication, the number of literature
reports of patients with Fanconi's anemia and leukemia probably
exceeds the actual number of cases. Five patients with leukemia
had coincidental hepatic tumors, which were usually discovered
at postmortem examination (221,271 ,280,293,319,323).

Treatment of the leukemia was less than satisfactory, and
deaths usually occurred within the first 2 months after diagno-
sis. Fanconi’s anemia patients with leukemia are exquisitely
sensitive to the toxic effects of chemotherapy, as predicted by
the previous discussion regarding agents that increase damage
to DNA. The combination of the forms of leukemia that are dif-
ficult to treat in anyone (e.g., myeloid), abnormal DNA repair,
and a lack of marrow reserve does not afford a good prognosis.
The only apparent long-term remission that has been reported
is one of 9 years in duration (304,305,315; K. J. Roozendaal, per-
sonal communication, 1989). One 2-year survivor after reduced-
dosage chemotherapy subsequently succumbed to varicella (92;
A. D. Auerbach, personal communication). The median survival
age for patients with leukemia is 16 years of age, which is
younger than the survival age for Fanconi’s anemia patients
without leukemia. Seventy-five percent of patients with leuke-
mia died at the time of the reports, and further follow-up was
not available for most of the other patients. Although bone mar-
row transplant offers a theoretical cure for the leukemia of
patients with Fanconi’s anemia, these patients are usually very
ill, and only a few have survived (243,290).

Will all patients develop leukemia if they do not succumb to
aplastic anemia first? Probably not, because the development of
leukemia appears to reach a plateau by age 30, whereas the older
patients have the additional risk of solid tumors. Only long-term
prospective studies can answer this question definitively.

Myelodysplastic Syndrome. Patients with Fanconi’s anemia
may develop syndromes that are variably called myelodysplastic,
refractory anemia, or preleukemia. Some conditions evolve into full-
blown Jeukemia; other patients die in their preleukemic phase, or
their conditions are reported before further developments ensue.
The risk of MDS was between 11% and 34% in cross-sectional
studies (251,260,324,325). Although more than one-half of the
cases of leukemia in Fanconi’s anemia have cytogenetic clones, it
has not been shown that the presence of a clone in the absence of
leukemia means that leukemia is inevitable. A cytogenetic clone
is included in the French-American-British classification of MDS
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(326), and specific clones impact on the prognosis of MDS in the
general population (327). However, application of these criteria
to MDS in Fanconi’s anemia may not be appropriate. Until
recently, most of the reported cases had MDS diagnosed because
of dysplastic marrow morphology or the presence of a clone, or
both. In a systematic analysis in which clonality was considered
independently of morphologic MDS, we found that one-half of
the patients with adequate cytogenetic preparations had a clone,
and clonal variation that included disappearance was common
(325). One-third of the patients had morphologic MDS, and, thus,
there were patients with cytogenetic clones who did not have
MDS by other criteria. Poor outcome correlated with MDS, not
with the presence of a clone. Patients with clones have survived
for more than 12 years without the development of leukemia or
died from cytopenic but nonmalignant complications of MDS.
No consistent pattern was found in the involved chromosomes,
although chromosomes 1 and 7 were more common than others;
partial or complete deletions, translocations, and marker chro-
mosomes were found. Details of the cytogenetic findings can be
found elsewhere (279,283,325,328). Less than 10% of the Fan-
coni’s anemia patients reported with leukemia had documented
MDS; in those with prior MDS, the emergence of leukemia was
within 1.5 years. The relevance of clonal cytogenetics may
become more apparent when methods that are more sensitive
than classic banding are widely used, such as fluorescence in situ
hybridization (329).

The relation between morphologic MDS, cytogenetic clones,
and acute myelogenous leukemia (AML) is not entirely clear,
and remains the topic of active investigation. Because the age of
the patient at diagnosis of Fanconi’s anemia, complication
(MDS or AML), and death is older in those with MDS than it is
those with AML, it is not immediately apparent that all MDS
become AML (Table 8-6). For this reason, it is not recommended
that a bone marrow transplant be offered to the Fanconi’s ane-
mia patient who has a clone without other clinical indications of
a need for transplant.

Three Fanconi’s anemia patients were reported with Sweet’s
syndrome [acute neutrophilic infiltration of skin, which is asso-

ciated with malignancy 20% of the time (330)]. All three patients
had myelodysplastic bone marrow, and two had clonal chromo-
somal abnormalities. The skin infiltrates responded to predni-
sone, but sustained treatment was required. This differs from
responses in non-Fanconi’s anemia patients with Sweet’s syn-
drome, in which permanent resolution of symptoms occurs.

Solid Tumors. Fifty-nine patients (5%) were reported with a
total of 70 cancers other than leukemia or liver tumors (Tables 8-6
and 8-8). The group with cancer is different in several features
from the entire Fanconi’s anemia population (Table 8-6 and Fig,
8-10). The preponderance of women with cancer (the male to
female ratio is 0.4) is owing to the prevalence of gynecologic
malignancies. The median age at diagnosis of Fanconi’s anemia
was 9.5 years of age in the cancer group, with one-third of the
patients diagnosed at 16 years of age or older. In approximately
20% of patients, it appears that the diagnosis of Fanconi’s ane-
mia had not been made before the development of cancer. Eight
tumors were diagnosed before 10 years of age, but the median
age was 26 years of age, and 80% of patients were at least 20
years of age when cancer was detected. The usual median age
for the types of cancers that are seen in Fanconi’s anemia is
approximately 65 (331), and, thus, their occurrence at a median
age of 26 years of age is highly unusual.

The types of tumors are listed in Table 8-8. The largest num-
ber of tumors was in the head and neck region, including the
tongue, gingiva, pharynx, larynx, epiglottis, and mandible, as
well as the esophagus. Gynecologic cancers, particularly vulvar
and cervical, were also common in women. The other areas that
are listed in the table occurred less frequently. Most of the
tumors were squamous cell carcinomas. Three patients had
solid tumors as well as AML (269,287,289).

The median survivals that are shown in Table 8-6 suggest
that survival is longer in those patients with cancer than in the
overall group of Fanconi’s anemia patients. This can be inter-
preted to indicate that cancer is clearly a disease of the older
Fanconi’s anemia patient. Thus, if these patients do not die from
aplastic anemia, leukemia, or liver disease, they are at a high

TABLE 8-8. Solid Tumors in Fanconi’s Anemia

All
Type Male  Female  Patients References
Nonhepatic
Oropharynx 10 12 22 201,207,221,268,293,307,332-347
Esophagus 1 8 9 44,204,332,348-354
Vulva and anus — 4 4 79,299,334,355
Vulva — 5 5 338,356-358
Anus — 2 2 201,359
Cervix — 3 3 269,355,356
Brain 1 3 4 287,360,361
Skin (nonmelanoma) 0 5 5 201,279,284,359,362
Breast —_ 4 4 201,206,222,229
Lung 2 0 2 17,182
Lymphoma 1 1 2 363,364
Gastric 2 0 2 365,366
Renal 0 3 3 201,209,360,367
Colon 0 1 1 299
Osteogenic sarcoma 0 1 1 368
Retinoblastoma 0 1 1 289
Total cancers 17 53 70 —
Total patients 16 43 59 —
Hepatic
Adenoma 6 5 1 211,319,369-375
Hepatoma 14 8 22 73,205,221,268,271,280,293,323,
344,350,376-390
Not stated 0 1 1 211,372
Total liver tumors 20 14 34 —




‘ risk for a solid tumor. The predicted median survival age for

patients with solid tumors is 31 years of age, at which age more
than 75% of the total group of Fanconi’s anemia patients have
already died. Survival is short after the diagnosis of a malig-
nancy. Treatment of most of these tumors is difficult because of
increased toxicity from chemotherapy or radiation therapy, and
surgery is recommended. whenever possible. More than one-
half of the patients had died by the time that they were

.. reported.

Tumors that occurred after bone marrow transplant were not

included in the previous.analyses, because transplant itself may
. be a risk factor for solid tumors. At least eight patients (four
" men, four women) were reported (some of them more than

once) with tongue cancer after marrow transplant (188,211,391~
398); five had died at the time of the reports. The tumors were
diagnosed at 3 to 15 years after transplant in patients between
11 and 33 years of age. The incidence of solid tumors after trans-
plant, specifically in Fanconi’s anemia, is not known, because
there is no clear denominator. Among more than 1000 long-term
survivors who were transplanted for all hematologic indica-
tions in the European Blood and Marrow Transplantation Reg-
istry, the actuarial incidence of malignant neoplasms was 13%
at 15 years, and oral or esophageal cancers were increased ten-
fold compared to the general population in the Danish and Ger-
man Cancer Registries (399). Thus, it would appear that the
combination of Fanconi’s anemia and transplant might have an
even higher risk.

Liver Tumors. Hepatic tumors were reported in 34 patients
{3%). The male to female ratio of 1.4:1.0 and median age at diagno-
sis of Fanconi’s anemia of 7 years (Table 8-6) indicate that this
group is not different from the overall group. The median age at
which the liver tumors were detected was 13 years of age,
although the range was wide and encompassed the oldest
patients (Fig. 8-10). Because only one patient did not have ante-
cedent androgen treatment, it might be argued that androgen
treatment increases the risk of liver tumors in Fanconi’s anemia
patients. Hepatocellular carcinomas were twice as common as
adenomas (Table 8-8), although the former were not overtly
malignant in that they did not metastasize or invade, and they
were often not associated with an increase in serum o-fetoprotein.
One patient also had tongue cancer (344), one had esophageal
cancer (350), and five had leukemia (221,271,280,293,319,323). The
liver tumors were often found at postmortem examination. In
general, patients with liver tumors, whether adenomas or hepato-
mas, did not die from their liver tumors but from other malignan-
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cies or complications of bone marrow failure. Discontinuation of
androgens, alone or combined with BMT, often led to resolution
of the tumors (205,372). Peliosis hepatis also reversed when
androgens were stopped. Surgical removal of tumors was under-
taken occasionally.

Summary of Malignancy in Fanconi’s Anemia. The risk of the
development of leukemia, a liver tumor, or a solid tumor in Fan-
coni’s anemia patients totals greater than 15% in the literature,
although the true frequency may be obscured by overreporting.
It is an important risk, particularly in older patients, because the
average age at which malignancies are diagnosed is beyond the
age of survival of many Fanconi’s anemia patients. Prolongation
of survival by a combination of androgens, better supportive
care, and stem cell transplantation (and gene therapy, in the
future) may lead to more time for malignancies to appear and
may even increase the risk of cancer (399a,399b). In addition,
Fanconi’s anemia may now be diagnosed by chromosome break-
age or mutation analysis in patients with characteristic cancers
but without any other stigmata of Fanconi’s anemia. Concerns
about the development of cancer in older patients cannot be used
as contraindications for aggressive management, such as stem
cell transplantation. However, cytoreductive chemotherapy and
irradiation may themselves increase the risk of malignancies. To
some degree, aplastic anemia may soon be considered to be the
least of the problems of the Fanconi’s anemia patient.

Dyskeratosis Congenita

Dyskeratosis congenita, also known as Zinsser-Cole-Engman syn-
drome, which is named after the first physicians who described
these patients, is a rare form of ectodermal dysplasia, with a 40%
to 50% frequency of aplastic anemia and a 10% to 15% frequency
of cancer. The diagnostic triad consists of dermatologic manifes-
tations and nail dystrophies that usually begin in the first decade
of life, and leukoplakia that begins in the second decade of life; all
of these conditions become more extreme with increasing age
(Fig. 8-11). Aplastic anemia usually develops in the second
decade of life, and cancer develops in the third and fourth
decades of life.

INHERITANCE AND ENVIRONMENT

More than 275 cases of dyskeratosis congenita have been
reported as case reports with data that could be analyzed on an
individual basis, many of which are summarized elsewhere
(400,401). Dokal reviewed the 148 members of the Dyskeratosis

Figure 8-11. A-D: Dystrophic fingernails in dyskeratosis congenita. (From Alter BP, Drachtman RA. Dys-
keratosis congenita: nails and hands. Am J Hematol 1998;58:298, with permission.) (continued)
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Figure 8-11. (continued)

Congenita Registry (DCR) that was established at Hammer-
smith Hospital (402). Although the impression is that dyskerato-
sis congenita is an X-linked disorder, the male to female ratio is
4.5:1.0 in the literature cases and 3.9:1.0 in the DCR (Table 8-9).

Presumed X-linked recessive: More than 200 males have been
reported as single cases or from families with males only. More
than 30 males were in sibships, with an additional seven families
with uncles and nephews and five families with maternal cousins.

Possible autosomal recessive: Forty-four patients were sporadic
females or males and females in sibships. Seven families had
affected children who were the products of consanguineous mar-
riages. There is an excess of females in this category, because spo-
radic males could not be distinguished from X-linked males.

Possible autosomal dominant: Thirty cases were in families in
which the transmission appeared to be dominant, with two or
more generations involved. The sex ratio is approximately 1 in
this group.

The families that appear to be autosomal recessive or domi-
nant might be X-linked with inactivation of the normal X chro-
mosome and variable levels of expression, but it is more likely
that the dyskeratosis congenita phenotype may be due to more

than one gene. Similarly, the presumably X-linked male group
may contain autosomal-recessive patients who happen to be
male, as well as new mutation dominants. These possibilities
may explain the apparent preponderance of females in the auto-
somal groups. The X-linked recessive group can be defined
more specifically using Xq28 restriction fragment-length poly-
morphisms (403) and mutation analyses (see the section Patho-
physiology) (402). No ethnic and sex association was found;
blacks have been reported in all groups, and Asians have been
reported in the X-linked and autosomal-recessive groups.

Tables 8-9 through 8-12 compare the findings in the three
groups. In comparison to the X-linked recessive males, the auto-
somal-dominant patients appear to be milder, with a lower fre-
quency of all the components in the diagnostic triad and a
lower rate of serious complications. The autosomal-recessive
group resembles the X-linked males, although there may be a
higher frequency of aplastic anemia in the autosomal-recessive
patients.

The age at diagnosis of dyskeratosis congenita in the three
groups is depicted in Figure 8-12. The ages may be inappropri-
ately skewed to the high side, because, in many cases, the only
age available was that given at the time of the report. The

TABLE 8-9. Dyskeratosis Congenita Literature

) X-linked and Autosomal
Characteristic Sporadic Male Autosomal Recessive Dominant
Number of cases 200 44 30
Male/female 200/0 10/34 14/16
Ratio — 0.29 0.88
Age at diagnosis (or report) (yr)
Mean 18.2 14.9 30
Median 15 13 25
Range 0.3-68 1.2-42 7-58
Age at presentation of nail changes (yr)
Mean 8.5 5.8 9.5
Median 8 5 7
Range 0-34 0-15 7-17
Age at presentation of skin pigmentation (yr)
Mean . 7.1 134
Median 9 4 13
Range 0-30 0-29 7-18
Age at presentation of leukoplakia (yr)
Mean 12.6 9 153
Median 10 7 17
Range 0.7-43 2-25 12-17

NOTE: Compiled from individual case reports, not including the Dyskeratosis Congenita Registry summary (402). Physi-

cal features were not always reported.




PANCYTOPENIAS 227

TABLE 8-10. Physical Abnormalities in Dyskeratosis Congenita
' Characteristic X-linked and Sporadic Male Autosomal Recessive Autosomal Dominant
ber of cases 200 44 30
1 pigmentation 92 86 67
il dystrophy 90 39 13
oplakia 68 68 33
iti 40 43 13
th abnormalities 19 30 10
velopmental delay 15 16 0
letal anomalies 11 25 7
13 23 3
; 11 9 7
1 ir loss 14 30 23
| nary tract abnormalities 8 5 3
strointestinal abnormalities 13 23 7
" Other conditions 10 23 10
Gonadal anomalies 4 9 3
F{OTE: Physical features were not always reported. Numbers are percent of cases except in top row, where they are total numbers.
8
TABLE 8-11. Complications in Dyskeratosis Congenita
X-linked and
Sporadic Male Autosomal Recessive Autosomal Dominant
Number of cases 200 44 30
Male to female ratio — 0.29 0.88
Age at time of diagnosis (or report) (yr) .
Mean 18.2 14.9 30
Median 15 13 25
Range 0.3-68 1.2-42 7-58
Aplastic anemia
Number of cases (%) 72 (36) 26 (59) 1(3)
Age at diagnosis (yr)
Mean 13.3 13.7 16
Median 10.5 11 16
Range 1-41 2-45 16
Cancer
Number of cases (%) 35(13) 6(14) 2(7)
Age at diagnosis (yr) :
Mean 304 27.8 30
Median 29 : 245 30
Range 13-68 21-42 17,43
Decease
Number of cases (%) 60 (30) 12 27) 1(3)
Age at diagnosis (yr)
Mean 21.2 21.2 39
Median 19.5 225 39
Range 2-70 5-34 39
Projected median 33 34 —
TABLE 8-12. Cancer in Dyskeratosis Congenita
Autosomal Autosomal
Recessive Dominant
X-linked and All
Type Sporadic Male Male  Female Male Female Patients References?
Oropharyngeal 12 0 4 0 1 17 402,419,435-445
Gastrointestinal 12 0 0 0 0 12 402,410,420,435,439,446-455
Myelodysplastic syndrome 4 0 0 0 0 4 402,452
Skin 3 1 0 1 0 5 402,456-460
Hodgkin’s disease 2 0 0 0 0 2 461,462
Bronchial 0 2 0 0 0 2 402,463
Pancreatic 0 1 0 0 0 1 402,461
Liver 1 0 0 0 0 1 464
Cervical and vaginal 0 0 1 0 0 1 465
Total cancers 37 1 5 1 1 45 —
Total patients 35 1 5 1 1 43 —
*Some cases were cited in more than one reference.
|
\
|
|
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Figure 8-12. Age at diagnosis of dyskeratosis congenita in more than 250
published cases from 1910 to 2000. A: Two hundred X-linked and sporadic
males. B: Forty-four autosomal-recessive patients. C: Thirty autosomal-
dominant patients.

median age was 15 years of age for X-linked and sporadic
males, 13 years of age for autosomal recessives, and 25 years of
age for autosomal dominants, thus distinguishing the latter
group again. The ages at the development of the components of
the diagnostic triad are summarized in Table 8-9. All findings
occurred earlier in the autosomal-recessive patients than in the
other categories. All three components of the diagnostic triad
were reported in more than 70% of the X-linked and autosomal-
recessive patients and in 50% of the dominant cases.

PHYSICAL EXAMINATION
The major skin finding in patients with dyskeratosis congenita
is lacy, reticulated hyperpigmentation, with dark, grayish mac-
ules on an atrophic and sometimes hypopigmented back-
ground, which involves the face, neck, shoulders, and trunk.
These changes become more dramatic with increasing age. The
dystrophic nail changes (hands and feet) include small nail
plates, which may develop longitudinal ridging and then may
!)ecome hypoplastic and eventually disappear. Leukoplakia
Involyes the oral and other mucous membrane surfaces.
Several other systems are also involved (Table 8-10). The
eyes are affected in approximately 40% of the patients, most
often with epiphora (excessive tearing) due to blocked lacrimal
ducts or blepharitis, as well as cataracts, a lack of eyelashes,
conjunctivitis, ectropion, abnormal fundi, glaucoma, strabis-

mus, and ulcers. Many patients have poor dentition, with mul-
tiple caries and early loss of all teeth. Skeletal abnormalities
include osteoporosis, frequent fractures, aseptic necroses (all
but one of the latter eight patients had received prednisone),
and scoliosis. Several patients have intracranial calcifications.
Approximately 15% of the patients are short, slender, delicate,
or asthenic in appearance. Hyperhidrosis of palms and soles is
common. Early hair thinning or loss and premature graying
were also reported. Urinary tract involvement was primarily
mucosal, with meatal and urethral stenosis, phimosis, hypospa-
dias, pyelonephritis, penile leukoplakia, and one horseshoe kid-
ney reported. Gastrointestinal problems include esophageal
stenosis, diverticula, spasm, duodenal ulcer, anal leukoplakia,
bifid uvula, and umbilical hernia. Male hypogonadism with
hypoplastic testes was reported in a few cases, similar to Fan-
coni’s anemia. One woman had a vaginal constriction, one had
vulvar leukoplakia, and one had a hysterectomy. Four women
apparently had successful pregnancies. Other rare reports
include deafness, absent eardrum, bird face, cardiac disease,
Dandy-Walker deformity, cholesteatoma, and microcephaly.

Because of the coincidence of skin abnormalities, aplastic ane-
mia, and malignancies, dyskeratosis congenita has sometimes
been confused or compared with Fanconi’s anemia (404-409). In .
fact, in one series of five Fanconi’s anemia patients, one patient
probably had dyskeratosis congenita and not Fanconi’s anemia
(199). The genetics and physical abnormalities of patients with
Fanconi’s anemia and dyskeratosis congenita are actually quite
different; although the same systems may be involved, the types
of anomalies are characteristic. In addition, aplastic anemia usu-
ally occurs earlier in Fanconi’s anemia than in dyskeratosis con-
genita. These disorders should not be confused clinically and can
be distinguished definitively by analysis of chromosome break-
age after clastogenic stress or by mutation analyses.

APLASTIC ANEMIA
Thirty-six percent of the X-linked male dyskeratosis congenita
patients and 59% of the autosomal-recessive patients were
reported to develop aplastic anemia at a median age of 11 years
(Table 8-11). Aplastic anemia was rare in the autosomal-dominant
patients. In many cases, hematologic symptoms preceded the
diagnosis of dyskeratosis congenita, although, in retrospect, the
physical abnormalities of dyskeratosis congenita had been
present for several years. In the younger patients, hematologic
changes may have occurred before the appearance of the dys-
keratosis congenita triad. The frequency of bone marrow failure
was much higher in the Hammersmith DCR cases, in which it
occurred in 86% of the 118 men, with an actuarial probability of
94% by 40 years of age (402). This difference may be related to
biased referrals of patients with severe hematologic involvement.

LABORATORY FINDINGS

Blood Counts. Thrombocytopenia or anemia, or both, are the
initial signs in most patients who ultimately develop aplastic
anemia. Macrocytosis and elevated HbF are common manifesta-
tions of stress erythropoiesis, even in patients without pancy-
topenia. Bone marrow aspirates may be hypercellular at first,
and several patients were initially thought to have hyper-
splenism. Decreased megakaryocytes, hypocellularity, and apla-

sia eventually ensue. Ferrokinetic studies are consistent with
aplastic anemia (406,407,410). A few patients had decreased
immunoglobulins (Igs) or decreased cellular immunity, but this
has been inconsistent (411).

Chromosome Breakage. Chromosome breakage was studied
in several patients. In a few patients, baseline breakage was




- gpparently increased, but the data from many patients and, par-

ticularly, from controls were often not cited. Breakage studies

. were normal in most patients, including those who were exam-

ined with DEB, MMC, or nitrogen mustard. Patients with dys-
keratosis congenita probably do not have increased breakage in
lymphocytes, particularly with clastogenic stress, and can be
differentiated from those with Fanconi’s anemia on this basis.
However, cultured fibroblasts develop chromosomal rearrange-
ments, which suggests that dyskeratosis congenita may be con-
sidered a chromosomal instability disorder (412).

. Hematopoietic Cultures. Hematopoietic cultures have been
performed in a few instances of patients with dyskeratosis con-
genita. In all patients, the numbers of progenitors were reduced
or there were none. All these patients were studied when they
already had hematologic symptoms (127,413-419). Addition of
GM-CSF increased colony numbers (418), as did SCF (131). Long-
term cultures were also defective in dyskeratosis congenita (420).

PATHOPHYSIOLOGY

Dyskeratosis congenita is inherited in a predominantly X-
linked pattern, but there are families with apparently autoso-
mal-recessive inheritance, as well as others with dominant
inheritance. The autosomal recessives might have X-linked

inheritance with lyonization and variable expression in males

and females, The more compelling explanation is that there are
at least three dyskeratosis congenita genes. Patients with dys-
keratosis congenita have a genetic risk for bone marrow failure,
but an environmental factor may be required for its manifesta-
tion. At least one patient received chloramphenicol before the
development of pancytopenia (421).

The X-linked gene was localized to Xq28 with restriction
fragment-length polymorphisms (403,422). Subsequently,
genetic linkage and XCIP (X chromosome inactivation pattern)
analysis narrowed the region to only 1.4 Mb (423). One of the 28
positional gene candidates in this region was found to have a 3’
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deletion in one patient, and missense mutations were found in
others, thus allowing identification of the dyskeratosis congen-
ita gene, DKC1 (424,425). Verification of DC as the causative
gene in the disease came from the identification of multiple mis-
sense mutations in the open reading frame (402,426,427).
Because the gene is highly conserved with genes in other lower
eukaryotes, the distinction between true missense mutations
and benign polymorphisms is readily apparent.

The DKC1 gene is composed of 15 exons that span 15 kilo-
bases (kb), and the cDNA is 2.5 kb. The corresponding protein,
dyskerin, is 514 amino acids in size, with a predicted molecular
weight of 57 kd. A mutational screen of dyskeratosis congenita
patients and patients with a related syndrome, Hoyeraal-
Hreidarsson, led to the recognition of a wide range of mutations
(Fig. 8-13). Because most of these are missense mutations, it is
likely that they encode mutant proteins with partial activity.
True null mutations in the DC gene may be lethal (402).

The cellular function of dyskerin remains unclear. The pro-
tein contains multiple phosphorylation sites and a carboxy-
terminal lysine-rich repeat domain. Dyskerin is the ortholog of
rat NAP57 and yeast CBF5, suggesting that this protein may
function in ribosomal RNA biogenesis and in the assembly of
ribosomes (424,428). Consistent with this hypothesis are studies
that showed that dyskerin localizes to the nucleolus of mamma-
lian cells. Taken together, these data suggest that dyskerin plays
a role in ribosomal assembly and, therefore, indirectly in pro-
tein translation and in cell survival. The two tissues that are
most highly affected in dyskeratosis congenita (skin epithelium
and bone marrow) have a high turnover in adults, suggesting
that dyskerin plays a role in survival of cells with a high prolif-
erative capacity.

Although Fanconi’s anemia cells have a characteristic cellu-
lar phenotype (i.e., sensitivity to DNA cross-linkers), dyskerato-
sis congenita cells have no consistent phenotype, which makes
complementation studies and functional assessment of muta-
tions more difficult. One study found that dyskerin binds to

F36V
L37del
K39E
P40R
E41K
T4sM
R65T
T66A
L72y M350T
$121G M3501
R158W L317F A353v* 2kb deletion
R322Q P384L G402E - ——
A2v | S280R 1321V P384S G402R
1 2(3 45 67 8 9 10 11 12 13 14 |15
1VS6 +40T>G 1551G>A
IVS2 -5C>G 1494 insAAG
IVS1 +592C>G IVS14-72G>T
URR -142C>G 1461C>T

Figure 8-13. Mutations in the DKC1 gene. Schematic representation of the 15 exons with patient-derived
mutations (bold) and polymorphisms (italics). Asterisk indicates the A353V mutation that has recurred in
17 different families. Underlined mutations were found in patients with the Hoyeraal-Hreidarsson syn-
drome. kb, kilobase. (Modified from Dokal I. Dyskeratosis congenita in all its forms. Br J Haematol

2000;110:768-779, with permission.)
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Figure 8-14. Kaplan-Meier plot of cumulative survival in dyskeratosis
congenita (DC). Time is shown as age in years. AD, 20 autosomal-domi-
nant patients; AR, 42 autosomal-recessive patients; XLR, 195 X-linked and
sporadic males. The differences are significant.

telomerase and therefore may play a role in telomere length
maintenance (429). Peripheral blood cells of patients with X-
linked dyskeratosis congenita have much shorter telomeres
than those in normal cells (430). This is especially interesting,
because accelerated telomere shortening is associated with
murine carcinomas (431) and may therefore be relevant to the
development of squamous cell carcinomas in dyskeratosis con-
genita (see the section Cancer).

The cloning of the DKC1 gene has important implications for
the diagnosis of dyskeratosis congenita and related syndromes.
The clinical abnormalities are variable from patient to patient in
severity and age of onset. However, pulmonary disease, myelo-
dysplasia, and malignancy may develop in the older patients
who survive or avoid the complications of early bone marrow
failure.

Mutational screening of the DKC1 gene is warranted in any
patient with clinical signs that are consistent with the disease,
although considerable disease heterogeneity is evident. In the
related syndrome, the Hoyeraal-Hreidarsson syndrome, patients
have a severe multisystem disorder that is characterized by
microcephaly, cerebellar hypoplasia, growth retardation, immu-
nodeficiency, and aplastic anemia. This syndrome was found to
result from unique missense mutations in the DKC1 gene (432—
434). Based on these new findings, mutational screening of the
DKC1 gene should be considered in any patient with severe
clinical phenotypes who has some of the features of dyskerato-
sis congenita or Hoyeraal-Hreidarsson syndrome, even if he or
she does not have the more classic signs of dyskeratosis congen-
ita, such as skin and nail changes.

PROGNOSIS

The prognosis is poor in dyskeratosis congenita. One-third of
the X-linked and sporadic male patients and of the autosomal-
recessive patients died by the time of the reports, at an actuarial
median age of 34 and 26 years of age, respectively (Fig. 8-14).
More than one-half of the deaths were due to complications of
aplastic anemia, such as infection or hemorrhage. Unsuccessful
bone marrow transplants and cancer were responsible for most
of the rest of the poor outcomes (see the section Cancer). Dokal
suggested that patients with dyskeratosis congenita have a pre-
disposition to endothelial activation and damage, based on the
observation of increased levels of von Willebrand’s factor and

pulmonary complications in several patients, including some
complications that occurred posttransplant (402).

CANCER

Cancers were reported in 35 X-linked males, six autosomal-
recessive patients (one male, five females), and one male and
one female who were in the autosomal-dominant group (Tables
8-11 and 8-12). This summary includes the cases that were
reported by Dokal (402), and, thus, there may be inadvertent
duplicate reporting. At least two patients had two or more
tumors. The majority of the tumors were squamous cell carcino-
mas. The sites were similar to those reported in patients with
Fanconi’s anemia (Table 8-8) and involve areas that are known
to be abnormal in dyskeratosis congenita, such as mucous
membranes and the gastrointestinal tract. The median age for
cancer was similar in all three types of dyskeratosis congenita
and was approximately 30 years of age, with a range from 13 to
68 years of age, which is substantially higher than the median
age of 11 years for the development of aplastic anemia (Table
8-11). Among those who developed cancer, the predicted
median survival is 36 years of age. In contrast to Fanconi’s ane-
mia patients, only a rare patient with dyskeratosis congenita
has been reported to have leukemia or MDS.

TREATMENT

Treatment for the aplastic anemia of dyskeratosis congenita is
similar to that for Fanconi’s anemia. Almost 40 patients were
reported to receive androgens, usually combined with predni-
sone, as described earlier for Fanconi’s anemia, and approxi-
mately 50% of patients responded, a similar response rate to
that seen in Fanconi’s anemia. As in Fanconi’s anemia,
responses are not cures, and androgens must be maintained;
subsequent failures do ensue. Splenectomies were reported in at
least eight male patients, with only temporary improvements.
Supportive care with RBC and platelet transfusions, antibiotics,
and e-aminocaproic acid (466) should all be provided when
indicated clinically. There are no reports on the use of antilym-
phocyte globulin or cyclosporin A, but these agents would not
be expected to work (one of our patients received these at
another institution without response) (400).

Hematopoietic growth factors were used in a small number of
cases, mostly for brief intervals in which only neutrophil
responses were documented. GM-CSF was effective in two
patients (467,468), IL-3 was effective for one of three patients
(469), and G-CSF was effective for three patients (470-472). All
of those were X-linked or sporadic male cases. We treated one
man from an autosomal-recessive family with G-CSF for more
than 1 year [with erythropoietin (EPO) for the last 10 months]
with an excellent neutrophil response and a 6-month improve-
ment in Hgb and platelets (473). Unfortunately, severe aplastic
anemia recurred despite continuation of both cytokines. Never-
theless, the combination of G-CSF and EPO might warrant
additional long-term trials.

BMT was reported in 20 X-linked or sporadic males
(452,460,470,474-483), with six survivors (30%) when reported.
Four of seven autosomal-recessive patients (57%) were alive
when reported (460,475,484-488). Causes of deaths included
acute and chronic graft-versus-host disease, infections, venooc-
clusive disease of the liver at as long as 7 years after transplan-
tation, and pulmonary fibrosis at up to 20 years. Some patients
developed a mucositis syndrome that was similar to that seen in
Fanconi’s anemia patients who received standard levels of
cyclophosphamide preparation. Most of the dyskeratosis con-
genita patients were prepared for transplant with standard
cyclophosphamide plus irradiation. The long-term prognosis
for most patients after transplant is poor, with actuarial median
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Figure 8-15. Kaplan-Meier plot of cumulative survival after bone marrow
transplantation (BMT) for patients with dyskeratosis congenita (DC). Time
is shown as years from transplantation. One patient was unsuccessfully
transplanted from a brother with DC (not shown). The difference between
sibling and alternate donors is not significant. Alternate, seven patients
were transplanted from alternate donors; SIB, 20 patients were trans-
planted from HLA-identical siblings.

survivals of 7 years for those with HLA-matched sibling
donors, and 1.5 years for the five cases in which alternate
donors were used (Fig. 8-15). The median survivals were 8
years for the autosomal-recessive patients, and 1.5 years for the
X-linked and sporadic men.

Transplantation in dyskeratosis congenita patients must thus
be approached with caution. In addition, because the physical
features of dyskeratosis congenita may appear late or may be
subtle, potential donors who may in fact be affected with dys-
keratosis congenita may be difficult to detect unless they have
an identifiable mutation. Finally, we can speculate that, as in
Fanconi’s anemia, marrow transplantation does not reduce
(and may increase) the risk of development of tumors. None
have been reported so far, perhaps because the long-term sur-
vival after transplant has been short, and the number of patients
who have undergone transplants is small.

Disorders That Are Related
to Dyskeratosis Congenita

As mentioned previously in the discussion of the DKC1 gene
(see the section Pathophysiology), a small number of male
patients has been described under the rubric of Hoyeraal-
Hreidarsson syndrome. The patients are small, with intrauterine
growth retardation, microcephaly, cerebellar hypoplasia, devel-
opmental delay, progressive pancytopenia, and immunodefi-
ciencies, and the inheritance appears to be X-linked. Recent
studies of three patients identified mutations in the DKC1 gerie
(432,489). Seven of the 11 patients died from infectious or hem-
orrhagic complications of aplastic anemia, and the oldest survi-
vor was 5 years of age and was 3 years of age after an unrelated
bone marrow transplant.

An even more rare disorder, Revesz syndrome, has been
reported in four cases, and one of the authors is aware of two
more (486,490,491; B. P. Alter, unpublished data, 1999). There were
three males and three females, and the characteristic findings
include intrauterine growth retardation, cerebellar hypoplasia,
and microcephaly. The patients have features of dyskeratosis
congenita, such as dystrophic nails, oral leukoplakia, sparse
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hair, and reticular skin pigmentation, as well as bone marrow
failure in four of the six patients. However, the unique feature
of these patients is bilateral exudative retinopathy, which was
called Coats’ retinopathy, but which resembles Norrie’s disease
(492). No germline mutations were found in the DKC1 gene or
the Norrie’s gene in one of our patients, however, and the
genetic basis of this syndrome remains unclear. A major concern
is the combination of thrombocytopenia and hemorrhagic reti-
nopathy, and it is recommended that platelet transfusions be
provided for unresponsive thrombocytopenia to decrease fur-
ther retinal hemorrhages. All patients, who were younger than 4
years of age when reported, were alive, although Revesz’s origi-
nal patient subsequently died (T. Revesz, personal communica-
tion, 1999).

Still another disorder with overlap with those disorders that
were previously mentioned is the ataxia-pancytopenia syndrome,
which was first described by Li et al. (493,494) in a family with
ataxia in the father and all five children. Two brothers died with
aplastic anemia, one with acute myeloblastic leukemia, and one
with acute myelomonocytic leukemia. The only surviving sib-
ling was a 19-year-old girl with mild anemia. A second family
was reported by Daghistani et al. (495) in which the mother, her
son, and her daughter had ataxia; the son had pancytopenia and
monosomy 7 and developed acute myeloblastic leukemia. There
are a small number of additional case reports of families or spo-
radic cases with men and women with ataxia, cerebellar atrophy,
microcephaly, tongue ulcers, immunodeficiencies, and aplastic
anemia or leukemia (496-499); none of these cases had mono-
somy 7. Eight of the 15 patients died between 3 and 10 years of
age; four died from leukemia, and four died from complications
of aplastic anemia. Treatment of pancytopenia with prednisone
was effective in one case (497), whereas antithymocyte globulin,
cyclosporine, and G-CSF were ineffective on another (496), and
prednisone plus danazol were also ineffective (498).

Shwachman-Diamond Syndrome

The Shwachman-Diamond (Bodian Shwachman) syndrome
consists of exocrine pancreatic insufficiency plus neutropenia
(500-502). More than 300 cases have been reported (Table 8-13).
Signs of pancreatic insufficiency, usually apparent in infancy,
are diarrhea, malabsorption, steatorrhea, and failure to thrive.
Neutropenia is identified early as part of the general workup or
because of skin infections or pneumonia. Additional hemato-
logic problems develop in 40% of patients, such as anemia,
thrombocytopenia, and pancytopenia. Occasionally anemia or
thrombocytopenia is the initial hematologic problem. The ratio
of males to females is 1.6:1.0. Segregation analysis provides evi-
dence that the inheritance is autosomal recessive, although
reports of consanguinity are rare (503). Shwachman-Diamond
syndrome has been reported in all racial groups, with no ethnic
propensity. Pregnancies and birth histories of patients are

-uneventful, although more than 10% of patients had low birth

weight. One Shwachman-Diamond patient was reported who
had a successful pregnancy, during which her white blood cell
count rose slightly, her absolute neutrophil count doubled from
her usual range of less than 2000/pL to approximately 4000/
HL, and her platelets dropped from more than 120,000/uL to
less than 110,000/1L. She required a caesarean section for ceph-
alopelvic disproportion, which perhaps was related to her small
stature. However, there were no major complications from her
Shwachman-Diamond syndrome (504).

The most prominent physical findings are related to mal-
nourishment, including short stature in more than one-half of
patients, protuberant abdomen, and low weight. Forty percent
of patients had radiographic evidence for metaphyseal dysosto-
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TABLE 8-13. Shwachman-Diamond Syndrome Literature

No Anemia or
All Patients Cytopenias Thrombocytopenia
Number of cases (%) 336 134 (40) 202 (60)
Male/female 196/121 79/53 117/68
Ratio 1.6 1.5 1.7
Number with metaphyseal dys- 124 (37) 51 (38) 73 (36)
ostosis (%)
Age at malabsorption
Mean 1.1 1.0 1.1
Median 0.3 0.3 0.3
Range 0-16 0-16 0-16
Age at marrow failure
Mean — 7.5 —_
Median — 3 —
Range — 0-35 —
Number with mental retarda- 33 (10) 20 (15) 13 (6)
tion (%)
Number with abnormal physi- 43 (13) 18 (13) 25(12)
cal examination (%)
Leukemia
Number of cases (%) 23 (7) 10 (7) 13 (6)
Male/female 19/1 I 10/0
Age at diagnosis (yr)
Mean 17.6 11.5 24.3
Median 14 7.8 235 .
Range 1.8-43 1.8-38 6-43
MDS
Number of cases (%) 30 (9) 5(4) 25(12)
Male/female 15/11 3/2 12/9
Age at diagnosis (yr)
Mean 10.3 7.6 10.8
Median 8.1 7.5 8.1
Range 2-42 3.5-12 2-42
MDS clone alone 5 — —
Died 2 — —_
MDS morphology alone 6 — —
Died 4 — —
Deceased
Number of cases (%) 68 (20) 32 (24) 36(18)
Male/female 37/25 20/12 17/13
Age at death (yr)
Mean 7.6 8.2 7.1
Median 3.3 53 0.9
Range 0.3-43 0.4-35 0.3-43
Projected median age for 35 25 37
all patients (yr)
Leukemia 14 — —_
MDS 16 — —

MDS, myelodysplastic syndrome,

sis. Ten percent had mental retardation, and 1.5% had micro-
cephaly. Several had an ichthyotic skin rash. Rare physical
anomalies include hypertelorism, retinitis pigmentosa, toe or
finger syndactyly, cleft palate, dental dysplasia, ptosis, strabis-
mus, short neck, coxa valga, and skin pigmentation.

The combination of pancreatic dysfunction plus bone mar-
row failure was noted by Ozsoylu and Argun (505), who found
decreased duodenal trypsin in patients with acquired aplastic
anemia or Fanconi's anemia. Those patients did not have symp-
tomatic malabsorption. In addition, patients with Shwachman-
Diamond syndrome have decreased amylase and lipase, as well
as trypsin.

LABORATORY FINDINGS

By definition, all patients with Shwachman-Diamond syndrome
have neutropenia (neutrophils below 1500/ nL on more than one
occasion). It may be chronic, intermittent, or cyclic and is usually
noted early in childhood. Thirty percent of patients were reported
to have two involved lineages, and 10% had all three lineages

involved. Pancytopenia occurred at a median age of 3 years (witha
range from 0 to 35 years of age). There are a few reports of defects
in neutrophil mobility, but this is an inconsistent finding (506-509).

Bone marrow examination shows myeloid hypoceltularity
or maturation arrest. The erythroid series is normal or hyper-
plastic. HbF levels are often elevated, even without anemia,
which suggests hematopoietic stress (510). Igs are occasionally
decreased. Hepatic dysfunction and fibrosis have also been
noted. Chromosomes are normal, and no increased breakage is
found after clastogenic stress.

Pancreatic insufficiency is documented by the demonstration
of low or absent duodenal trypsin, amylase, and lipase. Less
invasive than duodenal incubation, serum trypsinogen was
shown to be low in young patients, although it does increase
with age and is associated with improvement in absorption (511).
Other methods for demonstration of pancreatic insufficiency
include ultrasound or imaging studies that demonstrate a fatty
pancreas. Patients do not have cystic fibrosis, and sweat chloride
levels are normal.




PATHOPHYSIOLOGY

The inheritance of Shwachman-Diamond syndrome is autosomal
recessive (503). Although the exocrine pancreas and bone marrow
hematopoiesis develop at approximately the same time during
gestation, familial cases, as well as Shwachman-Diamond syn-
drome in only one of a pair of twins argue against an intrauterine
insult as the cause (512). Culture of bone marrow progenitors
shows decreased colony-forming units granulocyte-macrophage
(CFU-GM) and CFU-E in most patients, which suggests a stem
cell deficit. No evidence is found for humoral or cellular inhibitors
of granulopoiesis. Shwachman-Diamond syndrome thus resem-
bles other inherited bone marrow failure disorders, with reduced
numbers of hematopoietic progenitor cells.

The gene for Shwachman-Diamond syndrome has been
mapped to the centromere of chromosome 7, and, so far, the
data are consistent with a single locus with several different
mutations (513).

THERAPY AND OUTCOME
Malabsorption responds to treatment with oral pancreatic
enzymes. Infections are treated with the appropriate antibiotics
and may decrease with age. Supportive care should be pro-
vided, with transfusions for anemia and platelets for thrombo-
cytopenia. Corticosteroids or androgens, or both, were used in
approximately a dozen patients, with hematologic improve-
ment in one-half. The neutropenia does respond to G-CSF (514).
Among 12 patients who were reported to receive G-CSF, four
developed mildly dysplastic bone marrows with clonal cytoge-
netics (see the following section, Myelodysplastic Syndrome).

Evolution to pancytopenia or leukemia are the major hemato-
logic complications. Deaths were reported in 24% of the group with
cytopenias, 18% of those with only neutropenia, and 70% of those
with leukemia (Table 8-13). The projected median survival age for
the entire group is 35 years of age; the median survival is 25 years
of age for those with cytopenias, 14 years of age for those with leu-
kemia, and 37 years of age for those without hematologic complica-
tions. Those without these complications reach a plateau of almost
80% survival by the late teenage years (Fig. 8-16). The reported
deaths were usually due to infection, bleeding, or leukemia.

More than 20 patients had a bone marrow transplant; one-half
received bone marrow from sibling donors, and one-half received

SD Survival
1.00
No Cx
0.75 —
2 Aplastic
E
.§ 0.50 —
o MDS _LL[__
0.25 ] ~ Leukemia B
0.00 T T
0 20 40
Age (Years)

Figure 8-16. Kaplan-Meier plot of cumulative survival in Shwachman-
Diamond (SD) syndrome. The differences between curves are significant.
Aplastic, 94 patients with aplastic anemia; Leukemia, 18 patients with
leukemia; MDS, 16 patients with myelodysplastic syndrome; No Cx, 156
patients with no hematologic complications.
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Figure 8-17. Kaplan-Meier plot of cumulative survival after bone marrow
transplantation (BMT) for patients with Shwachman-Diamond (SD) syn-
drome. Time is shown as days from transplantation. The differences are
not significant. MUD, 12 patients had matched, unrelated donors; SIB,
seven patients were transplanted from HLA-identical siblings.

marrow from alternative donors (515-531). The outcomes were
similar, with an absolute mortality of approximately 50% from
either type of donor, projected median survivals of approximately
1 year, and plateaus at 47% survival (Fig. 8-17). Deaths after trans-
plant were from complications of marrow transplant, including
cyclophosphamide cardiotoxicity, or from leukemia. As with
other inherited bone marrow failure disorders, cases may have
been reported because of severity or complications (e.g., leuke-
mia), and Shwachman-Diamond syndrome may be milder than it
would appear from the literature.

Leukemia. Twenty-three patients, all male except one, devel-
oped leukemia (7%) at a median of 14 years of age (with a range
from 2 to 43 years of age). Five patients had acute lymphoblastic
leukemia, 17 had acute megaloblastic leukemia (four M1, two M2,
three M4, three M5, five M6) and one had juvenile chronic myelo-
cytic leukemia (500,502,519-521,524,526,529 532-541). Ten patients
had prior histories of cytopenias, whereas 13 patients did not. Sev-
enty percent died at a median age of 14 years for the total leukemic
group; the median age of death was 8 years of age for those with
prior cytopenias and 24 years of age for those without cytopenias.

Myelodysplastic Syndrome. Thirty patients had MDS, of
whom eight developed leukemia and are included in the analy-
ses that were previously mentioned (519-522,524-
528,530,533,540,542-546). Unlike leukemia, the male to female
ratio in MDS was similar to the ratio in all Shwachman-
Diamond patients. MDS was more frequent in those without
cytopenias. The median age was 8 years (with a range from 2 to
42 years of age). The projected median age at death for those
with MDS was 16 years of age (Fig. 8-16).

Five of the 30 patients had marrow cytogenetic clones with-
out morphologic evidence of MDS. Clones included monosomy
7 with t(6;13), t(4,7) and deletion 7 in patients who had received
G-CSF, as well as monosomy 7 in three patients, isochromo-
some 7q in 11 patients, der(7) in three, and other clones in five
other patients, all of whom did not receive G-CSF. Chromosome
7 was involved in a total of 22 patients.

Shwachman-Diamond syndrome thus resembles many of
the other inherited bone marrow failure syndromes in that it
has a malignant propensity. Although it is not clear that MDS
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inevitably progresses to leukemia, leukemia does occur in the
syndrome. To date, no solid tumors have been reported.

Other Disorders That Involve
Pancreas and Bone Marrow

A disorder with exocrine pancreatic insufficiency and refractory
sideroblastic anemia with vacuolization of bone marrow precursors was
identified in four patients by Pearson et al. (547) in 1979 and is
called Pearson’s syndrome. Anemia was more significant than neu-
tropenia, myeloid and erythroid precursors had vacuoles, and
there were ringed sideroblasts. Since then, there have been more
than 70 cases reported. The male to female ratio is 0.7, and the
median age at detection of anemia is 2 months (with a range from
birth to 7 years of age). One-third of patients have low birth
weight, and metabolic acidosis is a frequent presenting symp-
tom. Approximately 30% of patients have exocrine pancreatic
insufficiency, and insulin-dependent diabetes often develops.
Liver and renal failure ensue, and contribute to the metabolic
problems. The anemia requires transfusions, although there may
be some response to EPO and to G-CSF for neutropenia. The ane-
mia may improve in more than one-third of the patients, at a
median of 2 years of age (with a range from 3 months to 10 years
of age). One-half of the cases died from acidosis, renal or liver
failure, sepsis, and heart block when they were reported; the
patients usually did not die from bone marrow failure.

The molecular basis for this syndrome was found to be large
deletions of mitochondrial DNA (548). The features of the syn-
drome that are consistent with a mitochondrial disorder include
the involvement of multiple tissues, the paradox of ringed sid-
eroblasts (a problem of iron loading rather than of heme synthe-
sis) and macrocytic anemia, and severe and usually fatal
metabolic acidosis (549). Mitochondrial DNA is cytoplasmic,
inherited maternally, and heteroplasmic at the mitochondrial,
cellular, and organ levels. Each cell has many mitochondria,
which may have normal and mutant DNA within the mito-
chondrion and within the cell, and the proportion of cells with
mutant mitochondria varies from organ to organ. Thus, the clin-
ical problems are highly variable from organ to organ, patient to
patient, and time to time. The size of the DNA deletion and the
presence or absence of duplications and rearrangements does
not correlate with the clinical course (550). Those who survive
often develop Kearns-Sayre syndrome (progressive ophthal-
moplegia, pigmentary retinopathy, cardiac conduction defect,
hearing loss, and endocrinopathies), in which the same mito-
chondrial deletions have been found; patients whose first diag-
nosis is Kearns-Sayre syndrome usually do not have a preceding
marrow failure phase (551).

Patients with cartilage hair hypoplasia have an autosomal-reces-
sive disorder with metaphyseal dysostosis, short stature, and char-
acteristic fine hair (552). Approximately 80% of 108 Finnish
patients had mild macrocytic anemia, which was severe in 16% of
those patients. Lymphopenia was detected in 65% of patients, and
neutropenia was detected in 25%, but pancreatic insufficiency was
rare. The incidence of malignancy was increased by sevenfold and
included Hodgkin's disease in two patients, non-Hodgkin’s lym-
phoma in three patients, melanosis progonoma (retinoblastic ter-
atoma) of the testis in one patient, one vocal cord squamous cell
carcinoma, and three cases of basal cell carcinoma (552-555). The
gene was mapped to 9p13 in 1994, and mutations were recently
found in the RNA component of RNase MRP (556,557). Disruption
of the MRP gene may interfere with cell cycle control, but this
mechanism is currently speculative.

Amegakaryocytic Thrombocytopenia

A small number of patients present with thrombocytopenia,
usually in infancy, and subsequently develop aplastic anemia.
This was called type III constitutional aplastic anemia by
O’Gorman Hughes (295), but the term megakaryocytic thrombocy-
topenia is more descriptive. Although the differential diagnosis
of neonatal thrombocytopenia is lengthy, the entity to be dis-
cussed here excludes those conditions with increased bone mar-
row megakaryocytes as well as those that are due to congenital
infection (particularly viral, such as rubella). Immune thrombo-
cytopenias are also not included, despite the occasional devel-
opment of amegakaryocytosis, which is presumably due to the
reactivity of antiplatelet antibodies with megakaryocytes (558).
In addition, TAR syndrome is discussed later, because it repre-
sents a pure single cytopenia. Fanconi’s anemia, which can
begin with thrombocytopenia, was already discussed. Finally,
children with associated trisomies, such as trisomy 13 and 18,
have also been excluded. Various syndromes that are associated
with inherited thrombocytopenias are listed in Table 8-14. The
accepted cases of amegakaryocytic thrombocytopenia are sum-
marized in Table 8-15, with separate analyses of those with nor-
mal appearances and those with congenital anomalies.

More than 50 patients were reported with normal physical
appearance, in whom thrombocytopenia occurred primarily
early in the first year of life, with absent or reduced bone marrow
megakaryocytes (1,6,559-561). The male to female ratio was
approximately 1. One-half as many children were described with
amegakaryocytic thrombocytopenia in the first year of life who

had physical abnormalities that fit no other specific syndrome;

the sex ratio was equal in this group as well (6,562,563). The birth
defects included microcephaly, micrognathia, intracranial struc-

TABLE 8-14. Inherited Thrombocytopenia Syndromes

Disorder Genetics Chromosome Gene
Amegakaryocytic thrombocytopenia, no birth defects AR 1p34 c-mpl
Amegakaryocytic thrombocytopenia, with birth defects AR N/A N/A
Thrombocytopenia—absent radii syndrome AR N/A N/A
X-linked macrothrombocytopenia X-linked Xp11.23 GATA-1
Hoyeraal-Hreidarsson syndrome X-linked Xq28 DC1
Familial platelet disorder—acute myelocytic leukemia AD 21g22.1-.2 CBFA2
Familial dominant thrombocytopenia AD 10p11.2-12 THC2
Amegakaryocytic thrombocytopenia, with radioulnar synostosis AD 7p15-p14.2 HOXA11
Trisomy 13 Nondisjunction Trisomy 13 —
Trisomy 18 Nondisjunction Trisomy 18 —
Jacobsen syndrome 119 monosomy, partial deletion 11923 N/A

AD, autosomal dominant; AR, autosomal recessive; N/A, not available.
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TABLE 8-15. Amegakaryocytic Thrombocytopenia Literature

developmental delays. Some of the specific cases with cerebellar
atrophy were recently shown to belong to the Hoyeraal-
Hreidarsson syndrome, with mutations in the DKC1 gene that is
mutant in dyskeratosis congenita (see the section Dyskeratosis
Congenita). The physical findings in some patients resembled
those that are seen in Fanconi’s anemia, and the diagnosis of Fan-
coni’s anemia cannot be excluded retrospectively from the
reports. The inheritance may be autosomal recessive, because
some families had affected siblings or consanguinity, or both.

In both groups, the pregnancies and deliveries were essen-
tially unremarkable, although the frequency of spontaneous
abortions was 10%. Low birth weight was recorded in 25% of
patients with normal appearance and in almost one-half of
those with birth defects. The presentation was usually due to
bleeding in the skin, mucous membranes, or gastrointestinal
tract. Evolution to aplastic anemia was reported in almost one-
half of the patients, primarily in those without birth defects.

LABORATORY FINDINGS

The initial abnormality is thrombocytopenia, with normal white
blood cell counts and Hgb levels. Reported platelet counts
ranged from 0/uL to 88,000/pL at diagnosis, white blood cell
counts were normal, and Hgbs were low only after bleeding had
occurred. Macrocytosis, as well as increased HbF and i antigen,
suggested a broader level of marrow failure. One 5-year-old boy
with amegakaryocytic thrombocytopenia had increased MCV
and HbF but had not yet developed aplastic anemia (564). Bone
marrow cellularity is normal until aplastic anemia appears,
except for markedly decreased or absent megakaryocytes; those
that are present are small and apparently inactive. Homologous
platelet survival is normal, because the defect is underproduction
not increased destruction (565). Peripheral blood chromosomes
do not show the increased breaks that are characteristic of Fan-
coni’s anemia.

Prenatal diagnosis is possible by means of platelet counts in
fetal blood that is obtained during the midtrimester. Mibashan
and Millar (566) examined three fetuses who were at risk and
detected thrombocytopenia in one fetus. Because the gene has
now been cloned (see Pathophysiology), molecular diagnosis
should be possible.

No Anomalies Anomalies Patients
Number of cases 52 20 72
Male/female 27/24 11/8 38/32
Ratio 1.1 1.4 1.1
Age at diagnosis (d)
Mean 301 49 237
Median 40 0 6
Range 0-3285 0-365 0-3285
Aplastic anemia
Number of cases (%) 25 (48) 3(15) 28 (39)
Age at diagnosis (yr)
Mean 3.4 35 3.4
Median 3 2.3 2.9
Range 0.4-12.5 2.2-6 0.4-12.5
Leukemia and preleukemia, number 24 0 2 (3)
of cases (%)
Deceased
Number of cases (%) 17 (33) 13 (65) 30 (42)
Age at death (yr)
Mean 2.4 4.2
Median 0.5 2.8
Range 0.01-21.00 0-10 0-21
Projected median age 9 2.7 7
tural anomalies, congenital heart disease, failure to thrive, and PATHOPHYSIOLOGY

The thrombocytopenia is apparently due to a defect in produc-
tion, because megakaryocytes are decreased or absent. After
pancytopenia develops, hematopoietic progenitor cells are
decreased or absent (127,561,567,568). Thrombocytopenia may
be the first sign of aplastic anemia in many conditions, although
this group is distinguished by the relatively long duration
before pancytopenia. Serum levels of thrombopoietin (TPO), IL-
11, and IL-6 were elevated, which is related to megakaryocytic
deficiency (569,570). Cultures did not respond to added TPO,
and the expression of c-mpl RNA was impaired (571).

The gene that is involved in amegakaryocytic thrombocyto-
penia is the receptor for TPO, which is encoded by the c-mpl
gene. Mutations in c-mpl have been reported in at least 15
patients, all of whom are without birth defects
(560,561,572,573).

OUTCOME '
Aplastic anemia developed in almost one-half the patients, at a
median of 3 years of age, the oldest was 12 years of age. One-
half of the patients in whom aplastic anemia developed died
from bleeding or infection. One-half of those without aplastic
anemia died also from central nervous system or gastrointesti-
nal hemorrhages. Two-thirds of the deaths were in cases that
were described before 1980, and systematic platelet support
was not reported. The predicted median survival is 9 years of
age in those without birth defects and younger than 3 years of
age in those with physical anomalies, and the actual median
ages at reported deaths were 4 and 0.5 years of age. The oldest
patient in the former group died at 21 years of age, and the old-
est patient in the latter group died at 10 years of age.

One male with normal physical appearance had amegakary-
ocytic thrombocytopenia from birth, developed aplastic anemia
at 5 years of age, responded poorly to androgens plus steroids,
and evolved further into acute myelomonocytic leukemia at 16
years of age, with death at 17 years of age (295; N. Potter and B.
P. Alter, unpublished data). A female patient had thrombocytope-
nia at 2 months of age, pancytopenia at 5 months of age, and a
preleukemic picture with abnormalities that involved chromo-
some 19 (M. B. Harris, V. Najfeld, M. A. Weiner, et al., unpub-
lished data, 1984). Thus, amegakaryocytic thrombocytopenia
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- Figure 8-18. Kaplan-Meier plot of cumulative survival in amegakaryo-

cytic thrombocytopenia (Amega). Patients with only thrombocytopenia
and those with aplastic anemia are pooled, because the numbers are
small. Outcomes were not available for all patients. The differences are
significant. PE abnormal, 16 patients with birth defects; PE normal, 42
patients without birth defects.

may also be one of the marrow failure syndromes with a pro-
pensity to malignancy.

TREATMENT

Steroids alone were not effective in the treatment of amegakary-
ocytic thrombocytopenia. Steroids plus androgens resulted in
temporary or partial responses in a few patients. Splenectomies
were performed in four patients without effect. Figure 8-18
shows the survival curves for patients without and patients
with anomalies. We can speculate that platelet support might
prevent early deaths from thrombocytopenia, but the rate of
evolution to aplastic anemia might then be higher. Hematopoie-
tic growth factors that stimulate platelet production might be
considered when they become available. Guinan et al. (559) did
show a platelet response to IL-3 but not to GM-CSF in five
patients in a phase I and II trial, and Taylor et al. (563) reported
slight responses in two out of six patients with PIXY321 (GM-
CSF and IL-3 fusion protein), but neither of these agents is cur-
rently available.

Fifteen patients were treated with BMT; ten of the trans-
plants were from HLA-matched siblings, and five were from
unrelated donors, two of which were cord bloods. All of thése
patients were in the group without birth defects, and all but one
patient survived (4,243,561,574-576). Thus, stem cell transplant
has the potential to cure thrombocytopenia and prevent the
development of aplastic anemia or leukemia.

Familial Marrow Dysfunction

Several families have been reported with various combinations
of physical and immunologic abnormalities, in which hemato-
poietic defects and often leukemia have occurred. The ages at
the development of hematologic manifestations vary from
childhood to adulthood, and the inheritance patterns have been
of all types. Some of the families have anomalies that resemble
but in fact differ from those described in Fanconi’s anemia. One
group, the Estren-Dameshek familial aplastic patients, has been
reclassified as Fanconi’s anemia. Another group of patients has
anomalies that resemble those that are seen in Fanconi’s anemia
patients, but the group does not have Fanconi’s anemia. Other

patients fit into known genetic syndromes, such as Brachmann-
de Lange, Dubowitz’s, Seckel’s, and Down’s syndromes, and
are discussed separately. Several patients with physical anoma-
lies and aplasia are sporadic.

Some patients inherited their disease in an autosomal-
dominant manner. The IVIC syndrome, which is named for the
initials of the institution that first reported it (Instituto Venezol-
ano de Investigaciones Cientificas), is characterized by radial
ray hypoplasia, with absent thumbs or hypoplastic radial carpal
bones, hearing impairment, strabismus, imperforate anus, and
thrombocytopenia. The physical anomalies were noted in 24
members of five generations in the first family, in two children
and their father in the second family, and in a mother and son in
the third family that was reported (577-579). Mild thrombocyto-
penia and leukocytosis appeared before 50 years of age in 13
persons in the first family. The incidence of hematologic abnor-
malities is unknown, because many patients are still young,.
Baseline chromosome breakage was normal. Despite the lack of
complete aplastic anemia, the physical findings resemble those
that are seen in Fanconi’s anemia. It has been suggested that
this syndrome be renamed oculootoradial syndrome (580).

The WT syndrome was named after the initials of the first (and,
so far, the only) two families who have been reported (581).
Twelve patients were described, with three generations in one
family and five generations in the other family. They had radial-
ulnar hypoplasia, abnormal thumbs, short fingers, fifth-finger cli-
nodactyly, pancytopenia or thrombocytopenia, and leukemia,
Baseline chromosomes were normal without increased breakage.
As in the IVIC syndrome, the physical findings in the WT syn-
drome were subtly different from those in Fanconi’s anemia. The
authors suggested that several cases of atypical Fanconi’s anemia |
might be WT syndrome instead. Chromosome studies after clas- |
togenic stress should help to sort out this confusion. i

A family was described with dominant bone marrow failure,
acute nonlymphocytic leukemia, hyperpigmented skin, warts,
immune dysfunction, and multiple spontaneous abortions
(582). DEB-induced chromosome breakage was not increased.
This disorder resembles Fanconi’s anemia clinically but not
genetically.

Aufderheide (583) reported a five-generation family with 14
members who developed mild to profound single cytopenias or
pancytopenia by the third decade of life. Vascular occlusions
were also present in nine members of this family. One patient
had chromosome breaks in 20% of his cells, but his father, who
also had aplastic anemia, had normal chromosomes. Kato et al.
(584) reported a mother with aplastic anemia and her son with
adult-onset neutropenia and thrombocytopenia.

Dokal et al. (585) reported two families with dominantly
inherited proximal fusion of the radius and ulna. Among the 16
cases with this anomaly, four cases had adult-onset aplastic ane-
mia or leukemia. Two families were noted recently in which the
fathers had radioulnar synostosis and their children had synos-
tosis plus amegakaryocytic thrombocytopenia, which was
cured by stem cell transplantation; germline mutations were
identified in HOXA11, a gene that is involved in bone morpho-
genesis (586).

The syndrome of cerebellar ataxia and pancytopenia was
discussed previously in the section Dyskeratosis Congenita.

In a report on 19 members of eight families with acquired
aplastic anemia, four families with nine patients had a vertical
pattern, with a parent or aunt or uncle who also had aplasia
(587). These could be due to common environmental factors or §
to a genetic propensity for bone marrow failure. ]

Autosomal-recessive inheritance is the apparent pattern in §
several other families. Abels and Reed (588) reported two broth-
ers who had short stature and macrocytosis and who developed




pancytopenia at approximately 10 years of age. One brother had
immune deficiency and multiple cutaneous squamous and basal
cell carcinomas. He also had oral telangiectasias and neck and
chest poikiloderma, but these findings were insufficient to diag-
nose dyskeratosis congenita. Because the patients were both
male, the inheritance might also have been X-linked recessive.

Another family with associated immune disorders and
hematopoietic failures was described by Linsk et al. (589). Four
of six siblings from a consanguineous marriage had pure red
cell aplasia or neutropenia, or both, as well as unusual crystal-
loid structures that were demonstrated in the neutrophils by
electron microscopy. Chitambar et al. (590) described 8 of 14
members in one generation of a large maternal kindred in
which aplastic anemia, acute nonlymphocytic leukemia, and
monosomy 7 were found. This association of aplasia and leuke-
mia was also noted in families with possible X-linked recessive
inheritance. In the Scandinavian report on acquired aplastic
anemia with multiple family members (587), ten patients in four
families belonged to sibships.

Monosomy 7 was also a feature in the family that was dis-
cussed by Chitambar et al. (590). A sporadic patient with ataxia
and hypoplastic anemia was described by Samad et al. (591).
This 16-year-old man had Friedreich’s ataxia, short stature,
hypogonadism, and hyperreflexia. His macrocytic anemia
responded to testosterone. Peripheral blood but not marrow
chromosomes showed baseline increased breakage.

A clearly X-linked family was presented by Li et al. (592), in
which eight males in three generations had adult-onset pancy-
topenia, acute myelogenous leukemia, light chain disease, or
ALL (one case).

Another X-linked syndrome with hematopoietic complica-
tions is the X-linked lymphoproliferative syndrome, to which more
than 25 kindreds belong (593). At least 17 of these boys devel-
oped fatal aplastic anemia during or before malignant infectious
mononucleosis. Other components of this syndrome include
hypoproliferative disorders, agranulocytosis, and hypogamma-
globulinemia, as well as proliferative disorders that are associ-
ated with the Epstein-Barr virus, including American Burkitt
lymphoma, immunoblastic B-cell sarcoma, plasmacytoma, and
fatal mononucleosis. The disease is caused by a defect in the
SH2DIA (SH2-domain 1A) gene at Xq25 (594,5%94a,594b). This
gene, also called SAP for SLAM (signaling lymphocyte activation
molecule)-associated protein, helps regulate T-cell activation dur-
ing immune responses.

There are also reports of sporadic cases with aplastic anemia
and physical abnormalities. One patient and a set of twins had
anomalies that were similar to those that are seen in patients
with Fanconi’s anemia, and increased baseline chromosome
breaks were seen in one patient (595,596). This case did not have
increased breakage after clastogenic stress (A. D. Auerbach, per-
sonal communication). In a larger series of cases that were
reported to the IFAR, 11 children had aplastic anemia and anom-
alies, and their chromosome breakage was not increased by DEB
(597). 1t is probable that many cases that were called Fanconi’s
anemia in the older literature and are included in our own analy-
ses did not have Fanconi’s anemia. Only modern testing with
DEB or MMC can help to properly categorize all of these cases.

Also, there are cases that do not fit into any categories. Two
adult siblings had thrombocytopenia (not pancytopenia) and a
robertsonian translocation (t13;14), although six other patients
with the translocation did not have hematologic problems (598).
In three of the eight families with 19 members with aplastic ane-
mia, who were previously cited (587), anemia might have been
related to drugs. In other reports, four families had more than
one patient with chloramphenicol-related aplastic anemia (599-
601). Two families had siblings with aplastic anemia after hepa-
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titis (602,603). Gold, methyprylon (piperidine), and idiopathic
aplastic anemia also have each been reported in sets of siblings
(604-606). A mother and child pair with idiopathic aplastic ane-
mia was also reported (607).

Thus, aplastic anemia might be associated with familial
(genetic) predisposition to specific adverse environments. In
some cases, physical abnormalities may call attention to the
possibly inherited nature of the condition. The familial and
inherited marrow failure syndromes are clearly heterogeneous,
with a large variety of phenotypes and all the possible inheri-
tance patterns. It remains for future investigations to elucidate
the relevant genetic and environmental factors.

LABORATORY FINDINGS

The patients in this heterogeneous group with familial marrow
dysfunction have variable degrees of pancytopenia, macrocyto-
sis, elevated HbF, and hypocellular bone marrow. Families with
additional findings, such as immune deficiencies, novel chromo-
somes, or monosomy 7, may be distinguishable from those with
nonfamilial disorders, but those with familial disease without
characteristic findings are more difficult to diagnose. Baseline
chromosome breakage is usually normal in the non-Fanconi’s
anemia familial cases, but examination with clastogenic agents is
required for definitive distinction. The numbers of hematopoietic
stem cells are also reduced, but this too is nondiagnostic (567).

PATHOPHYSIOLOGY

The combination of genetic and environmental factors is essen-
tially unique to each of the types of cases that are outlined in
this section on familial marrow dysfunctions. The inheritance
patterns are of all types. At the hematopoietic level, the defects
may be multiple, because some of the patients have only single
cytopenias. Thus, the pluripotent or committed progenitor cells
may be defective.

THERAPY AND OUTCOME

Several of the patients that were described previously were
treated with transfusions, antilymphocyte globulin, or andro-
gens, with some limited success. Because each case is practically
unique, no guidelines can be established, except to suggest that
androgens might be more effective than immunosuppression.
Because immune dysfunction is part of some of the syndromes,
even that statement is overly simplistic. In general, the drug
and supportive care should be the same as the treatment that
was described previously for patients with Fanconi’s anemia or
acquired aplastic anemia. Although BMT cannot be dismissed
out of hand, it is risky, because related donors may have the
same condition. In several families, aplastic anemia is just the
first step to preleukemia and leukemia. Overall, the prognosis
for familial bone marrow failure is not good.

Down'’s Syndrome

Trisomy 21, or Down’s syndrome, is often associated with a
neonatal transient myeloproliferative syndrome and, later, with
an increased risk of leukemia (608). A few patients have been
reported with aplastic anemia. A 17-year-old boy had idiopathic
aplastic anemia and trisomy 21 and apparently responded to
androgen treatment (609). Vetrella et al. (610) described a new-
born with trisomy 21, cystic fibrosis, and amegakaryocytic
thrombocytopenia, who died at 49 days of age, with pancytope-
nia shortly before death. A 12-year-old boy developed aplastic
anemia that was unresponsive to androgens and died within 10
weeks of diagnosis (611); another patient was mentioned with
aplastic anemia at 19 months, who appeared to respond to
androgens (612). A fifth case was published in which a patient
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developed aplastic anemia at 9 months of age and died at 26
months of age with gastroenteritis (613). Although bone mar-
row was generally hypocellular in these patients, the last case
had increased numbers of CFU-GM, apparently with cellular
and serum inhibitors of hematopoiesis. The few patients with
trisomy 21 who developed aplastic anemia raise the question of
whether this is a true association or merely coincidence.

Dubowitz’s Syndrome

A rare, apparently autosomal-recessive condition in which
aplastic anemia has occurred is Dubowitz’s syndrome. In a
review of 141 cases, hematologic and malignant complica-
tions were noted in 12 (614). The major features are intrauter-
ine and postnatal growth retardation, microcephaly,
moderate mental retardation, hyperactivity, eczema, and
facial anomalies, such as hypertelorism, epicanthal folds, ble-
pharophimosis, broad nose, and abnormal ears. Six patients
had aplastic anemia, two had leukopenia, and one each had
acute lymphoblastic leukemia, non-Hodgkin’s lymphoma,
malignant lymphoma, and neuroblastoma. Thus, approxi-
mately 10% of the patients with Dubowitz’s syndrome have
had hematopoietic or oncologic problems. This is another
syndrome with growth defects that are associated with hema-
topoietic disorders and malignancies.

Seckel’s Syndrome

Another rare, autosomal-recessive condition in which aplastic
anemia has been reported is Seckel’s syndrome. Although more
than 60 patients have been published as having this syndrome,
it may be an overused term that is applied to a heterogeneous
group of microcephalic dwarfs; thus, the true number is not
clear. The stringent definition includes severe intrauterine and
postnatal growth retardation, severe microcephaly, severe men-
tal retardation, the typical face with receding forehead and chin,
antimongoloid slant of palpebral fissures, prominently curved
nose, relatively large eyes and teeth, highly arched palate, hir-
sutism, and clinodactyly (615).

Among the group with Seckel’s syndrome, at least 10% of
patients developed aplastic anemia (616-620), although two
patients also had hypersplenism (617). One-half of those patients
died from sepsis during childhood. All received transfusions,
and androgen treatment was ineffective. One patient died 2
weeks after BMT, whereas another was cured (620). Fanconi’s
anemia was considered in all cases, because the patients were
small, microcephalic, and retarded and had pancytopenia. In
fact, the patients with Seckel’s syndrome are much smaller and
more severely microcephalic and retarded than those with Fan-
coni’s anemia. Chromosome studies were normal in two of the
patients with aplastic anemia. Endogenous breakage was
increased in one patient and further increased with MMC in the
sibling of that patient, but the diagnosis of Fanconi’s anemia
could not be firmly established. Another patient with aplastic
anemia had increased spontaneous and MMC-induced break-
age in fibroblasts and lymphocytes (621). Two patients who did
not have aplastic anemia had normal chromosomes, by the cri-
teria of endogenous breakage, as well as SCEs (622). One
patient was reported to develop AML at 26 years of age (623).
Seckel’s syndrome is another autosomal-recessive syndrome
with growth retardation, a small but real risk of aplastic anemia,
and, perhaps, leukemia. There is probably no association with
increased chromosome breakage. The genes that are responsible
for Seckel’s syndrome have not been identified, but there is no
evidence that Seckel’s syndrome patients have mutations in FA
genes (624).
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Diamond-Blackfan Anemia

The first descriptions of red cell aplasia in infancy consisted of
two cases that were reported by Josephs (625) in 1936 and four
cases that were reported by Diamond and Blackfan (626) in
1938. A variety of synonyms and eponyms have been used: con-
genital hypoplastic anemia, chronic congenital aregenerative
anemia, erythrogenesis imperfecta, chronic idiopathic erythro-
blastopenia with aplastic anemia (type Josephs-Diamond-
Blackfan), and Diamond-Blackfan anemia (DBA). Diamond and
Blackfan used the term congenital hypoplastic anemia because

- they thought the disorder differed from complete aplastic ane-

mia only in degree. The term hypoplastic is now used when mar-
row depression (pancytopenia) is only partial; thus, the term is
not appropriate for a single cytopenia. Erythrogenesis imper-
fecta is probably the most descriptive appellation, but now the
commonly used term is DBA.

The following are diagnostic criteria for DBA:

¢ Normochromic, usually macrocytic but occasionally nor-
mocytic, anemia that develops early in childhood

* Reticulocytopenia

* Normocellular bone marrow with selective deficiency of red-
cell precursors

* Normal or slightly decreased leukocyte counts

* Normal or often increased platelet counts

These criteria clearly differentiate DBA from aplastic ane-
mia, but may not always distinguish it from transient erythro-
blastopenia of childhood (TEC) (see the section Transient
Erythroblastopenia of Childhood).

More than 700 cases of DBA have been reported in case reports,
and many of the references are cited in previous reviews (4,627~
629). Additionally, there are almost 500 cases that are summarized
in large series, although many of these patients may also have been
subjects in individual case reports (131,630-633). The ages at which
DBA was diagnosed (or the first transfusion or treatment initiated)
are shown in Figure 8-19 and summarized in Table 8-16. Boys were
slightly younger than girls (with medians of 2 and 3 months of
age). Ten percent of patients were severely anemic at birth, with
severe anemia presenting in 25% by 1 month of age, 50% by 3
months of age, 75% by 6 months of age, and 90% by 18 months of
age. Five percent of patients were diagnosed between 1.5 and 2.5
years of age, 3% before 6 years of age, and another 2% between 6
and 68 years of age. The male to female ratio is 1.1:1. Most of the
reports from almost 50 countries are of white patients, but DBA
has been described in blacks, Asians, and Indians.

A dozen cases presented in patients who were older than 6
years of age. A 34-year-old man with anemia had an anemic
daughter who was diagnosed at 6 years of age, and, subse-
quently, a grandson was diagnosed with classic DBA (634,635).
A female who was diagnosed as anemic at 16 years of agehad a
son who was diagnosed at 9 months of age (636). The paternal
grandfather in a family in which four males were diagnosed in
three generations was diagnosed at 20 years of age (637). One
male was diagnosed at 9 years of age in a large consanguineous
family in which seven members were affected in one genera-

tion, of whom five were male siblings and two were male and
female cousins (638). Two women, who were 25 and 64 years of
age, had long-standing anemia that responded to prednisone,
were of short stature, and had other findings that are typical of |
DBA, including webbed necks and thenar atrophy (639). Two 4
additional males were diagnosed at 7 and 22 years of age (640), |
and three females were diagnosed at 11, 13, and 35 years of age

(630.640-642).
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Figure 8-19. Age at onset of anemia in approximately 550 published cases with Diamond-Blackfan ane-
mia. Note the scale on the abscissa is in months on the left, for those between 0 and 12 months of age,
and in years on the right, for those between 1 and 10 years of age. Not shown are nine patients who were

between 11 and 64 years of age at diagnosis.

INHERITANCE AND ENVIRONMENT

The inheritance of DBA appears to have more than a single
pattern. There were more than 30 families with dominant dis-
ease that involved parent-child transmission. The carrier par-
ent often had a history of anemia, although, in some cases, the
parent only had increased HbF or macrocytosis, or both, with-
out significant anemia. The ratio of males to females in the
dominant group was approximately 1. The incidence of physi-
cal abnormalities was lower, and the clinical course was gener-
ally milder than it was in the overall DBA population. A large
series that was reported by Willig et al. (643,644) had 33 fami-
lies with classic DBA in at least two generations. Twenty-one
of 154 sporadic cases had a first-degree relative with anemia,
increased MCV, or increased red-cell adenosine deaminase
(ADA) (see the section Laboratory Findings), and these rela-
tives had the same DBA gene mutation as the proband in their
family, which suggests that some “sporadic” cases may be
autosomal dominant.

Another 30 families might be construed as recessive, because,
apparently, there were affected siblings and normal parents,
consanguinity, or affected cousins. In addition to one set of male
twins in a sibship with three affected males (645), a set of
affected identical twins has also been reported (646). The inci-
dence of anomalies was actually slightly higher in the recessives
than in the overall group, but the anemia was milder and more
responsive. The inheritance in the apparently recessive families
might be dominant with variable expression, but that is less
likely, because there are several families with consanguinity.
Removal of all of the patients in families leaves several hun-
dreds of cases that are apparently sporadic, which suggests that
DBA occurs as a new mutation or as an acquired disease or that
penetrance is extremely variable.

Several patients were the products of problem pregnancies,
which suggests that they had congenitally acquired marrow
failure. The pregnancy problems include preeclampsia, tox-
emia, rashes, premature placental separation, hemorrhage,
spotting, and positive tests for syphilis. Exposures during
pregnancy include diethylstilbestrol, x-rays, chlorothiazide,
reserpine, thyroid hormone, prednisone, phenylbutazone,
chloramphenicol, and anagyrine. A few mothers had previous
spontaneous abortions or miscarriages. Seven percent of the
patients weighed 2500 g or less at birth, but only 14 patients
were born at less than 36 weeks gestation, and, thus, most

were small for gestational age (intrauterine growth retarda-
tion). The low birth weight might reflect pregnancy problems
or poor growth that is intrinsic to DBA itself.

The anemia in patients with DBA was often noted at birth or
during infancy. Jaundice due to hemolytic disease of the new-
born from Rh or ABO blood group incompatibility occurred
occasionally and led to prolonged anemia that became chronic
(647) or that sometimes resolved after a few months (648). A
few patients had antecedent illnesses such as diarrhea, respira-
tory infections, urinary tract infections, measles, or mumps, or a
smallpox vaccination. One child was treated with chloram-
phenicol (649). In most patients, the illness was more likely to
be due to the anemia or to be unrelated than to be the cause of
the anemia. The signs of anemia were usually pallor, lethargy,
irritability, and heart failure.

PHYSICAL EXAMINATION
Physical abnormalities were described in more than 160
patients (25%) (Table 8-17). Abnormalities of the head and

TABLE 8-16. Diamond-Blackfan Anemia Literature

All Patients
Number of cases 705
Male/female 3327313
Ratio 1.1
Male age at diagnosis (mo)
Mean 9.6
Median 2.0
Range 0-408
Female age at diagnosis (mo)
Mean 14.2
Median 3.0
Range 0-768
Number of male patients older than 1 year 29 (9%)
of age
Number of female patients older than 1 39 (12%)
year of age
Deceased
Number of cases 90 (13%)
Age at death (yr)
Mean 1.5
* Median 8.8
Range 0-65
Projected median age 43
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TABLE 8-17. Physical Abnormalities in Diamond-Blackfan
Anemia (Percent of Cases)

Abnormality Percent of Cases

Birthweight <2500 g
Head, face, palate
Upper limbs

Short

Eyes

Renal

Neck

Hypogonads
Retardation
Cardiopulmonary
Nose

Other skeletal

Other

At least one anomaly?
Short stature alone

-_

N =
WUOR=SNNNMNWARUINONN

*Not including low birth weight or short stature. Many patients had more than one
abnormality. Physical descriptions were available for 650 patients.

face were common. The typical face was described by Cathie
(650) as “tow-colored hair, snub nose, thick upper lips, rather
wide set eyes, and an intelligent expression” and was
observed in many of the children, who resemble each other
more than they do their own family members. Cleft lip and
palate were noted. Other findings include micrognathia,
microcephaly or macrocephaly, macroglossia, wide fontane-
lle, and dysmorphic features.

Upper limbs, particularly thumbs, are often abnormal. In our
experience, the most common features are subtle flattening of
the thenar eminences and weakness of radial pulses. Other
radial hand anomalies are also common. Triphalangeal thumbs
were noted in 22 patients who were otherwise similar to the
total group of patients. Although this association was initially
separated by some into the Aase syndrome (651), it is probably an
inappropriate example of splitting rather than lumping patients
into groups according to their abnormalities (652). Fourteen
patients had duplicated thumbs, and 13 had otherwise abnor-
mal thumbs, such as absent or subluxed thumbs. Thumb anom-
alies may be unilateral or bilateral. The presence of abnormal
thumbs does not predict the course of the anemia.

Another common finding in DBA patients is short stature.
Because many patients have received corticosteroids, it is often
difficult to identify genetic short stature, but it was seen in more
than 10% of the patients. There were four reports of dwarfism,
including achondroplasia (653,654), metaphyseal dysostosis (655),
and cartilage hair hypoplasia (655). Short or webbed necks were
reported in 3% of patients, including both Klippel-Feil syndrome
(fused cervical vertebrae) and Sprengel’s deformity (elevation of
the scapula). A Turnerlike phenotype was sometimes mentioned.

Five percent of patients had eye anomalies, most frequently
hypertelorism, as well as blue sclerae, glaucoma, epicanthal
folds, microphthalmos, cataracts, and strabismus. Kidney abnor-
malities, including horseshoe, duplicated, and absent kidney,
were also noted in a few patients. Male hypogonadism was noted
in 2%, and 2% of patients were retarded. Lower limb problems
included dislocated hips, achondroplasia, and clubfoot. Congen-
ital heart disease of all kinds was seen occasionally. The presence
of anomalies serves more to confirm the diagnosis of DBA than to
provide any prognosis regarding the course of the disease.

Figure 8-20. Peripheral blood from a patient with Diamond-Blackfan ane-
mia. Note anisocytosis with microcytosis and macrocytosis, as well as tear-
drop erythrocytes (arrows). (Courtesy of Dr. Gail Wolfe. From Alter BP. The
bone marrow failure syndromes. In: Nathan DG, Oski FA, eds. Hematology
of infancy and childhood, 3rd ed. Philadelphia: WB Saunders, 1987:159_
241, with permission.)

LABORATORY FINDINGS
All patients with DBA are anemic by definition. Hgpb levels at
birth show a range of 2.6 to 14.8 g/dL, with a median of 7 g/
dL. In approximately 60 infants who were diagnosed with
DBA between birth and 2 months of age, the median Hgb was
4 g/dL, with a range from 1.5 to 10.0 g/dL. In those who were
diagnosed later, the Hgb was also usually in the 4 g/dL
range. Macrocytosis was almost uniform, and reticulocytes
were usually absent. Figure 8-20 shows a representative blood
film, with anisocytosis, macrocytosis, and an occasional tear-
drop.

Vl\)lhite-cell counts are generally normal in DBA patients,
although counts sometimes decrease with the person’s age. Val-
ues of 5000/pL or less were found at some time in 20% of
patients, and values of less than 3000/uL were found in 5%.
Two heavily transfused older patients developed significant
neutropenia (N. S. Young, unpublished data). Platelet counts are
also usually normal, although 25% of patients had at least one
count that was less than 150,000/uL, and 20% had one count
that was greater than 400,000/pL. Buchanan et al. (656) noted
elevated platelets in 50% of 38 patients and decreased platelets
in 25% on at least one occasion. They found that platelet func-
tion was normal.

HDE is usually increased and is distributed heterogeneously
(Fig. 8-21), which indicates that the patients do not have a single
clone of completely fetal cells. The proportion of Gy to Ayplus
Gy is greater than 50%, which is similar to that found in fetal
RBCs. The titer of red cell-membrane i antigen is also increased,
as in fetuses, whereas the adult counterpart, I antigen, remains
at adult levels. These fetal-like erythrocyte features are seen in'
newly diagnosed patients, patients who respond to corticoste-
roids, and patients in spontaneous remissions. They are not
unique to patients who are affected with DBA, but they are
characteristic of the stress erythropoiesis that is seen in any type
of bone marrow failure (47,48).

Bone marrow examination by aspiration or biopsy shows
normal cellularity, myeloid cells, and megakaryocytes. Lym-
phocytes are often increased (this is seen even in normal infants;
most of the marrow tests are done in infants with DBA) and |
were initially thought to be hematogones (657). Eosinophilia is §
occasional (658). Three patterns of erythroid development were |
described by Bernard et al. (659):




Figure 8-21. Kleihauer-Betke acid elution study of blood from a patient
with Diamond-Blackfan anemia, showing the heterogeneous distribution of
the fetal hemoglobin. (Courtesy of Dr. Gail Wolfe. From Alter BP. The bone
marrow failure syndromes. In: Nathan DG, Oski FA, eds. Hematology of
infancy and childhood, 3rd ed. Philadelphia: WB Saunders, 1987:159-241,
with permission.)

o Erythroid hypoplasia or total aplasia is seen in 90% of
patients with DBA (Fig. 8-22). The only erythroid precursors
in some patients are immature proerythroblasts.

«» Five percent of cases have normal numbers and maturation
of erythroblasts.

o The remaining 5% of patients have erythroid hyperplasia,
but this is present with a maturation arrest and increased
numbers of immature precursors.

Despite the variable bone marrow picture, all DBA patients
have reticulocytopenia. Thus, a few patients must have ineffec-
tive erythropoiesis. Dyserythropoietic morphology has been
seen oOccasionally (see section Congenital Dyserythropoietic
Anemia). Ringed sideroblasts were noted rarely, then disap-
peared (660,661). Patients who receive many transfusions accu-
mulate iron in the marrow (Fig. 8-22) and other organs.

" Serum levels of iron, ferritin, folic acid, vitamin B,,, and
EPO all are elevated, and DBA is not due to a deficiency of
any of the normal hematinic agents (662). DBA patients do
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not have antibodies to EPO. Routine urinalysis is normal. It
was once thought that an abnormality in tryptophan metabo-
lism occurs (663,664), but other investigators failed to confirm
this (665). Hypocalcemia was reported only once (666), and
mild hypogammaglobulinemia was noted in several patients
(627,659,667,668). These parameters are normal in many other
patients. Low numbers of T lymphocytes and a reduction in
the ratio of helper to suppressor T cells were reported by Fin-
lay et al. (669), but abnormalities of T-cell function were not
observed. Ferrokinetic studies showed the delay in plasma
iron clearance and low RBC utilization that were expected in
aplastic anemia (659,666,670). Autologous RBC survival times
were slightly shortened (627,671), and haptoglobins were low
in three patients (627,672), which suggests a mild hemolytic
anemia.

Patients with DBA have negative direct antiglobulin
(Coombs’) tests, and their disease is not due to RBC autoanti-
bodies, although alloantibodies may develop after many trans-
fusions. Results of bone marrow cultures and erythropoietic
inhibitor assays are described in the section Pathophysiology.

Abnormalities were observed in RBC enzymes and involved
purine or pyrimidine metabolism. Giblett et al. (673) described
a patient with atypical DBA who also had lymphopenia and
nucleoside phosphorylase deficiency; other patients had nor-
mal nucleoside phosphorylase levels (674,675). Increased levels
of the pyrimidine enzymes orotate phosphoribosyl transferase
and orotidine monophosphate decarboxylase (ODC) were
reported in five patients in one study (675), and increased ODC
was reported in five of ten patients in another study (676). ODC
is an age-dependent enzyme that is increased in cord blood
cells, and the elevation is consistent with the presence of young,
fetal-like erythrocytes.

Glader et al. (674) and Glader and Backer (676,677) have
observed increased RBC ADA in 26 of 29 DBA patients. ADA,
a critical enzyme in the purine salvage pathway, is not ele-
vated in erythrocytes from cord blood or in patients with
hemolytic or other aplastic anemias. ADA was also elevated in
2 of 12 DBA parents (674). Whitehouse et al. (678) found an
increase in ADA in 9 of 19 patients and in 2 of 15 relatives. The
significance of ADA is not clear, because it is also increased in
some children with acute lymphoblastic leukemia, and thus
may indicate disordered erythropoiesis that is distinct from
fetal-like erythropoiesis (677). Increased ADA does help to
distinguish DBA from TEC (see the section Transient Erythro-

Figure 8-22. A: Bone marrow aspirate from a patient with Diamond-Blackfan anemia, showing normal
cellularity with erythroid hypoplasia. B: Iron stain of bone marrow aspirate from a 2-year-old child with
transfusion-dependerit Diamond-Blackfan anemia. (Courtesy of Dr. Gail Wolfe. From Alter BP. The bone
marrow failure syndromes. In: Nathan DG, Oski FA, eds. Hematology of infancy and childhood, 3rd ed.
Philadelphia: WB Saunders, 1987:159-241, with permission.)
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blastopenia of Childhood). As mentioned previously, some
otherwise normal parents of classic DBA patients have ele-
vated ADA and a mutant DBA gene, which is supportive of a
dominant inheritance pattern in those families (643,644).

Chromosomes are normal in most patients with DBA (627).
Rare abnormalities include an achromatic area in chromosome
1 (666), a pericentric inversion in one patient (679), enlarge-
ment of chromosome 16 in three of six patients (680), and
breaks and endoreduplication of chromosome 16 (681). One
patient had increased spontaneous and x-ray-induced chro-
mosome breakage, without increased breakage due to MMC
(682). Others showed no increased breakage to DEB (683,684).
Sister chromatid exchange is normal. Chromosome breakage
studies are not informative, except to distinguish DBA from
Fanconi’s anemia. However, several patients were identified
with translocations or rearrangements that permitted map-
ping and cloning of the first DBA gene (see the section Dia-
mond-Blackfan Anemia Genes).

A small number of patients with clinical DBA were found
to have parvovirus DNA in their marrow. Three patients who
had documented, second-trimester, intrauterine infections
did not respond to intravenous Ig therapy (685). One patient
died from respiratory failure at 9 months, whereas the other
two patients remained transfusion-dependent. Three others
whose marrows contained parvovirus DNA at the time of
their diagnosis of DBA underwent spontaneous remissions
after steroid treatment for 2 months, 3 years, and 9 years
(686).

Prenatal Diagnosis. One fetus in a family with two DBA chil-
dren had an apparently high-output cardiac failure when it was
studied with two-dimensional fetal Doppler echocardiography,
(687) although the reliability of this test has been questioned
(681). Ultrasound may be used to detect cardiomegaly and effu-
sions from hydropic anemic fetuses, and intrauterine transfu-
sions might be offered (688,689). The possibilities of increased
fetal erythrocyte ADA or decreased fetal blood erythroid burst-
forming units (BFU-E) have not been examined. Prenatal gene
mutation analyses might also be considered (see the section
Diamond-Blackfan Anemia Genes).

PATHOPHYSIOLOGY

Erythropoiesis. DBA may have more than a single basis,
because the genetics and the phenotypes appear to be multiple.
Most in vitro studies of the erythropoietic defect have been lim-
ited to small numbers of patients. Different results may be
related to true variability of the disease. The general consensus
is that the erythroid progenitor cell is intrinsically abnormal.
The major erythropoietic hormone, EPO, is increased in DBA
patients to levels that are higher than expected for a given
degree of anemia (662).

A few of the early patients appeared to have RBC alloanti-
bodies (647,648,690,691). These patients had neonatal jaun-
dice and ABO or Rh incompatibility; anemia persisted longer
than expected, or bona fide DBA was eventually diagnosed.
Antibody specificity may have extended to erythroblasts or
progenitors, or blood group sensitization may have been a
real but unrelated episode. Blood group incompatibility was
not found to be significant in a large number of patients
(628).

Cellular inhibitors were proposed by Hoffman et al. (692),
but one of those patients was later studied by Nathan et al.
(693), who were unable to detect inhibitory lymphocytes
when HLA-identical marrow was used as the target popula-
tion. Another patient was found to have normal erythroid

progenitors and no cellular inhibitors (694). Nathan et al.
(695) found no inhibition of normal or autologous marrow
CFU-E by the lymphocytes in four transfusion-dependent
patients and no inhibition of normal or patient blood BFU-E
by the lymphocytes of eight patients, who ranged from trans-
fusion-dependent to those with steroid-independent remis-
sions. They demonstrated that patient T cells were actually
stimulatory to normal-blood null-cell BFU-E, as are normal T
cells (696).

Cumulative evidence indicates that the erythroid stem cell
is abnormal in DBA. Cultures of bone marrow and blood
mononuclear cells in plasma clot or methylcellulose showed
reduced numbers of CFU-E or BFU-E in more than 50
patients, and normal numbers in approximately 12 patients
(697). Patients with normal quantities of progenitors may
have been younger and untreated. It was suggested that
those patients who subsequently responded to prednisone
had better erythroid growth in vitro. Addition of steroids in
vitro was also found to increase erythropoiesis in a few stud-
ies (695,698).

Several studies suggested that DBA erythroid progenitor
cells required unusually high concentrations of EPO (695,699~
702). These EPO studies used crude EPO, which may have
contained other erythroid growth-promoting factors. Lipton et
al. (701) demonstrated increased EPO sensitivity in DBA bone
marrow cultures to which a source of burst-promoting activity
(BPA) was added; this suggested that BPA might act directly
on the progenitor cell and not through accessory cell media-
tion (702). Halperin et al. (699) found that IL-3 increased the
size and number of marrow BFU-E. The earlier suggestion that
DBA erythroid progenitor cells were insensitive to EPO may
have reflected a specific insensitivity to BPA or to IL-3. The
protective role of EPO was supported by the observation by
Perdahl et al. that the hormone was required to prevent accel-
erated apoptosis (703). Dianzani et al. (704) showed that there
were no mutations in the receptor for erythropoietin and also
that there was no pathogenetic role for IL-9 or for the 5q hema-
topoietic cluster (705).

Another candidate ligand-receptor set is SCF and its recep-
tor, c-kit, which are mutant in Steel and W mice that have a mac-
rocytic anemia. In vitro addition of SCF to bone marrow BFU-E
cultures resulted in increased colony numbers in the majority of
DBA studies (131,640,706). However, mutations were not found
in SCF or c-kit genes (707-709), and SCF gene expression was
normal (710,711). In addition, treatment of both Steel and W
mice with prednisone in doses that are comparable to those that
are effective in DBA patients did not improve the anemia of the
mice (712).

Diamond-Blackfan Anemia Genes. The identification of DBA
genes has relied on the mapping of DBA loci through large
kindreds. The first clue to localization of a gene at 19q13 was
provided by one patient with a reciprocal X;19 translocation
(713) and three patients with microdeletion syndromes that
involved 19q13.2 (714~717). The translocation breakpoint
occurred within the gene for ribosomal protein 519 (718).
Approximately 25% of unrelated DBA patients were shown to
have mutations in this gene, including nonsense, frameshift, ;
splice site, or missense mutations (Fig. 8-23). Only one of the
two RPS19 alleles was mutated in the DBA patients, which
suggested that the disease results from haploinsufficiency at
this genetic locus. Presumably, biallelic mutation of the RPS19
gene would be lethal. How a 50% reduction in a ribosomal
subunit can cause the developmental abnormalities of DBA §
remains unknown. A decrease in function of this ribosomal }
subunit may result in impaired protein translation. This
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Figure 8-23. Point mutations in RPS19, one of the Diamond-Blackfan anemia genes. The positions of sin-
gle nucleotide substitutions or small deletions or insertions in the RPS19 gene, which are found in DBA
patients, are indicated along the six exons of the RPS19 gene. (From Willig T, Draptchinskaia N, Dianzani
1, et al. Mutations in ribosomal protein $19 gene and Diamond Blackfan anemia: wide variations in phe-
notypic expression. Blood 1999;94:4294-4306, with permission.)

impairment may be most evident in specific cell lineages, such
as the erythrocyte lineage.

Another DBA genetic locus was recently identified at chro-
mosome 8p23.2-p22, and evidence was obtained for at least a
third gene (719). In that study of 38 families, 47% mapped to
8p, 34% to 19q, and the remaining 18% to neither of those loci.
No ribosomal subunit genes map to the 8p region, which sug-
gests that the DBA gene at this locus may have an alternative
function.

The cloning of DBA genes has diagnostic implications. Some
DBA patients have clinical findings that resemble those that are
seen in Fanconi’s anemia, although DBA patients differ in that
the anemia may respond to corticosteroid therapy. Genetic
diagnoses may serve to identify the patient as DBA, if the Fan-
coni’s anemia testing is inconclusive. At this time, the only spe-
cific test that can be offered to suspected DBA patients is
mutational analysis of the RPS19 genetic locus (720). One “com-
mon” mutant allele has been identified, which allows for direct
screening of this polymorphic site (644).

THERAPY AND OUTCOME

Transfusions. The only treatment that was initially available
for DBA patients was transfusions, without which affected
children died of anemia (625). This remains the mainstay of
the steroid-resistant patient. White-cell free-packed RBCs are
given every 3 to 6 weeks, as needed, to keep the Hgb at a level
higher than 6 g/dL. Careful cross-matching for minor blood
groups is usually done only when alloantibodies develop from
sensitization. The major complication from transfusions is
hemosiderosis. This was the cause of death in at least 20% of
the more than 50 patients for whom the cause of death was
stated. The side effects of iron overload in DBA are identical

with those that are seen in thalassemia major, including diabe-
tes, cardiac failure, liver disease, growth failure, and failure to
enter puberty. These complications do not develop as rapidly
in DBA patients as they do in thalassemia patients, in whom
there is the added complication of a hemolytic, rather than an
aplastic, anemia. Chelation of iron with subcutaneous deferox-
amine should begin soon after the patients have begun a
chronic transfusion program, as they are shown to have
increased iron stores. Although an oral chelator is under
development, its use is not advised in DBA because of the risk
of neutropenia (721-723).

Splenectomy. Splenectomy was reported in approximately
40 patients, with no apparent benefit except in those who had
hypersplenism that was related to transfusions. Fifty percent of
the splenectomized patients were reported to have died, and at
least one-half of those deaths were due to infections. Splenec-
tomy is not usually recommended today.

Corticosteroids. Gasser first proposed the treatment of
DBA patients with steroids, based on his observations of tran-
sient erythroblastopenia in patients with transient allergic dis-
orders and of eosinophils in the bone marrow of DBA patients
(658,724). The first drugs were cortisone or adrenocorticotro-
pic hormone (725), but prednisone and prednisolone have
become the drugs of choice. Twelve of 22 patients responded
in the first series by Allen and Diamond (726). The current rec-
ommendation is prednisone, 2 mg/kg/day, in three or four
divided doses. Reticulocytes usually appear within 1 to 2
weeks. Some of the erythropoiesis is apparently ineffective,
because a sustained rise in Hgb may not occur for several
weeks, although it usually appears within 1 month. The high
divided-dose protocol is maintained until the Hgb reaches 10
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g/dL. 1t is then tapered slowly, by sequential removal of the
divided doses, until the patient is on a single daily dose that
maintains the Hgb. This dose is then doubled and adminis-
tered on alternate days, followed by a slow reduction in the
amount. Treatment on alternate days reduces the side effects
of the steroids. One group used prednisone daily for a week,
followed by 1 to 2 weeks without any drug, to permit better
growth (670), but this protocol did not work in our hands. The
alternate-day dose depends on the patient and varies from as
low as 1 mg to more than 40 mg; some patients are sensitive to
small doses, as well as to small changes in dose. Failure to
remit with the previously outlined prednisone protocol may
be an indication for a trial of 4 to 6 mg/kg/day or a trial of
prednisolone or dexamethasone. Any medications that might
be marrow suppressive or that affect the metabolism of pred-
nisone, such as phenytoin or phenobarbital, should be discon-
tinued. Steroid remissions have occurred in patients after 10
years of transfusions (627,649,727); thus, a history of transfu-
sions should not preclude an adequate trial of steroids that are

combined with iron chelation, as needed. Steroid side effects

include growth retardation in more than one-half the patients

(628) and osteoporosis, aseptic necroses of femoral or humoral
heads, weight gain, cushingoid appearance, hypertension,

diabetes, fluid retention, gastric ulcers, cataracts, and glau-
coma. These side effects may be sufficiently serious to warrant
switching to a transfusion program, despite hematologic
response.
There are several patterns of response to steroids:

* Rapid response, followed by steroid-independent remission
(less than 5%).

* Intermittent response (approximately 5%).

* Response, followed by steroid dependence (60%). As many
as 20% of these patients may eventually be able to maintain
their Hgb levels without steroids.

* Steroid response and dependence, followed by later failure
to respond to the same or higher doses (5%).

* Requirement for large daily doses, which usually means
resuming transfusions because of the steroid side effects
(less than 5%).

* No response (30% to 40%). Overall, steroid nonresponders,

high-dose responders, or subsequent failures make up almost
50% of cases.

In general, 15% to 25% of patients may eventually have a
hematologic remission that is unrelated to their treatment or
response to treatment (728). '

Several other therapeutic approaches also have been
attempted. Androgens (see the section Fanconi’s Anemia)
were reported in more than 50 patients, with apparent
response in only three patients. Immunosuppressive drugs
were given to a few patients. 6-Mercaptopurine was used suc-
cessfully in one patient (729) and unsuccessfully in another
(730). Two patients had transient reticulocytosis after admin-
istration of cyclophosphamide and antilymphocyte globulin
(731) (N. S. Young, unpublished data), whereas others had no
response to cyclophosphamide (730,732,733). Vincristine has
also been ineffective (731,733,734). Ozsoylu (735) suggested
that high doses of intravenous methylprednisolone are effec-

tive, as was described previously for severe acquired aplastic
anemia.

Cyclosporin A. Cyclosporin A treatment was reported in 29
patients. It permitted the elimination of prednisone in only three
patients (736-739), but it did result in lower doses of prednisone
in another 13 patients (740-746). However, some of these

responses were only transient. Twelve patients did not respond
to cyclosporin A alone or when it was combined with prednisone
(742,744,745,747). Responses to immunosuppressive agents sug-
gest that DBA may be an autoimmune disease, but supportive in
vitro data are lacking.

Cytokines. EPO treatment seemed reasonable, based on the
in vitro data that suggest response to high doses of the hormone.
In a total of ten patients, doses of up to 200 U/kg/day for as
long as 5 months had no impact on erythropoiesis (748,749).

IL-3 was also a good candidate based on in vitro studies.
Approximately 100 DBA patients were treated with IL-3 in five
studies, with the achievement of independence from transfu-
sions and steroids in 10% (630,750-753). However, side effects
included serious allergic responses, fevers, chills, and deep vein
thromboses, and this agent is no longer available.

Hematopoietic Stem Cell Transplant. BMT is an option for
those patients who do not respond to reasonable doses of
steroids. Almost 40 patients have been transplanted from
HLA-matched sibling donors, with a 75% absolute survival.
Eight cases had alternative donors, with a 38% absolute sur-
vival. Their ages at transplantation ranged from 1 to 31 years
of age and 1 to 18 years of age, respectively, and most were
steroid nonresponders or had relapsed on steroids and had
received transfusions. The survivals plateau at 76% and 43%,
respectively, with exclusion of the last death, which was from
metastatic osteosarcoma that developed after the transplant,
in the group with alternative donors (Fig. 8-24). The results
for marrow donors were similar to those for cord donors,
with respective actuarial survivals of 59% and 63%. The Dia-
mond-Blackfan Anemia Registry reported an actuarial sur-
vival of 88%, when sibling donors were used, and 28% with
the alternative donors (728). It should be noted that they
include one patient who had late-onset osteogenic sarcoma
and who was originally reported by Giri et al. (754). The
results suggest that DBA may be cured by hematopoietic
stem cell transplant.

Reported deaths after transplant were related to interstitial
pneumonitis, graft rejection, graft-versus-host disease, and

Survival After BMT
1.00 —
L'—| siB
0.75 —
£
2 ]
g 0.50
a
0.25 —
Other
0.00 T T T T
0 1000 2000 3000 4000
Time (Days)

Figure 8-24. Kaplan-Meier plot of cumulative survival in Diamond-
Blackfan anemia after bone marrow transplantation (BMT). Time is shown
as time after BMT in days. Other, 3 matched unrelated donor marrows, 3
matched unrelated donor cords, 1 mother, 1 grand uncle; SIB, 38 patients
with a sibling donor.
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Figure 8-25. Kaplan-Meier plot of cumulative survival in Diamond-
Blackfan anemia. Time is shown as age in years, because most cases are
diagnosed in infancy. Lines represent 78 cases reported from 1936 to
1960, 113 cases from 1961 to 1970, 90 cases from 1971 to 1980, 115
cases from 1981 to 1990, and 309 cases from 1991 to 2000. The differ-
ences are significant.

venoocclusive disease in the sibling group and graft-versus-
host disease, sepsis, Epstein-Barr virus lymphoma in donor
cells, and venoocclusive disease in the alternative donor group.
The decision for transplantation in DBA is not easy, because
perhaps 20% of patients may eventually have a remission. In
general, stem cell transplants are more successful in young, rel-
atively untransfused (and unsensitized) patients; thus, the deci-
sion to undergo transplant sometimes must be made before a
potential remission may occur. As in other genetic diseases,
DBA must be ruled out in the donors.

Survival Data. The survival data on more than 600 patients
that were reported in the literature are shown in Figure 8-25.
Patients who are reported in more recent years have a cumula-
tive survival that is better than those who were reported ini-
tially, reflecting the effect of steroid treatment and better
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programs for transfusion and chelation. The projected median
survival for all patients is 43 years of age. Almost 100 patients
were reported to have died (13%) at a median of 6 years of age
in the entire group (Table 8-16). The most common causes of
death were complications of iron overload and pneumonia or
sepsis. Other deaths were due to BMT complications, leukemia,
cancer, renal disease, anesthesia, pulmonary emboli, and unde-
fined central nervous system disorders.

The quality of life is good for most patients. The spontane-

- ous remitters and the steroid responders who can be main-

tained on low doses live essentially normal lives. Those who
must be transfused can receive chelation therapy, as do patients
with thalassemia major. The future of hematopoietic stem cell
transplants lies in cautious optimism, with improvements
needed for those for whom alternative donors are needed. Gene
therapy may also become available as that technology is devel-
oped and as the genes become identified.

Pregnancy. Many DBA patients have grown to adulthood
and had children. Among 25 reported DBA females who had
29 pregnancies, 12 babies were normal, and 16 had DBA; there
was one miscarriage (504). In the Boston series of 76 DBA
patients, five men and three women had 13 children, three of
whom had DBA (631). Pregnancy is undoubtedly underre-
ported, except in the context of dominant inheritance. From
the limited information that is available, there appears to be
temporary worsening of anemia during pregnancy in almost
one-half of the cases, perhaps due to marrow suppression by
estrogens. We advised maintenance of maternal Hgb at a level
greater than 8 to 9 g/dL to avoid maternal anemia that might
lead to intrauterine growth retardation, preterm delivery, or
fetal distress (504). Seven of the 28 deliveries required cesar-
ean sections, owing to fetal anemia, toxemia, and failure of
labor to progress.

COMPLICATIONS

Leukemia. Leukemia was reported in ten patients (Table 8-18).
One girl had a spontaneous remission of DBA at 5 years of age,
developed ALL at 13 years of age, and, after complete remission
of the ALL, she was free from both conditions at 17 years of age
(755; G. Schaison, personal communication, 1982). Nine patients

TABLE 8-18. Cancer in Diamond-Blackfan Anemia

Type Male Female Unknown All Patients References

Leukemia

Acute lymphoblastic 0 1 0 1 759

Acute myeloblastic? 5 2 2 9 276,631,733,757,758,760-762
MDs? 2 0 0 2 760,764
Total leukemia + MDS 7 3 2 12 —
Osteogenic sarcoma 2 3 0 5 632,754,763,764
Sarcoma, soft tissue 1 0 0 1 764
Breast — 2 0 2 632,765
Hodgkin’s disease 2 0 0 2 632,766,767
Non-Hodgkin's lymphoma 0 1 0 1 768
Hepatoma 2 0 0 2 769,770
Colon 0 1 0 1 764
Fibrohistiocytoma 1 0 0 1 771
Stomach cancer 1 0 0 1 770
Melanoma 0 1 0 1 631
Total solid tumors 9 8 0 17 —

MDS, myelodysplastic syndrome.
*One patient had MDS that developed into acute myeloid leukemia within 1 year.

"MDS is not considered cancer in these analyses. Some cases were reported more than once. No patient had more than one cancer.




246  8: INHERITED BONE MARROW FAILURE SYNDROMES

had various forms of AML. These included two patients who
were from the original series of Diamond et al. (756) and who
had intermittent remissions of DBA but died of acute myelo-
blastic leukemia at 31 and 43 years of age (757; F. H. Gardner,
unpublished data, 1984). One patient had received radiation to
his thymus and long bones to stimulate the bone marrow. A girl
whose DBA treatment included cyclophosphamide died of
acute promyelocytic leukemia at 13 years of age (733). One boy
developed acute megakaryoblastic leukemia at 14 months of
age; it is possible that his anemia from 2 months of age was
really a long preleukemic phase (758). Potential extenuating cir-
cumstances were less apparent for the other cases. The majority
of the patients died from their leukemia. Janov et al. (631) calcu-
lated the relative risk of leukemia to be 200-fold.

Myelodysplastic Syndrome. One patient had MDS that
developed into AML within one year, whereas two others had
MDS at the time of the reports and died from complications of
bone marrow failure (760,764).

Solid Tumors. Seventeen patients with DBA developed non-
hematologic neoplasms (Table 8-18). The most common were sar-
comas, including five osteogenic and one soft-tissue sarcoma.
There were two Hodgkin'’s and one non-Hodgkin’s lymphoma,
two breast cancers, and one each of colon, fibrohistiocytoma, gas-
tric, and melanoma cancers. Two patients also developed hepato-
mas, one of whom had transfusional iron overload, and the other
had received androgens. Although a formal risk ratio cannot be
determined from literature case series, DBA can be classified in
the premalignant category in which many of the bone marrow
failure syndromes now appear to belong.

Aplastic Anemia. Evolution to complete aplastic anemia has
not been convincingly documented in DBA patients, although it
was mentioned once without details by Najean (772). One
reported case developed cytomegalovirus infection before pancy-
topenia (773), and another was multiply transfused and thus
might also have a viral etiology (774). Pancytopenia has also
occurred in patients with severe iron overload or terminal sepsis.
In general, DBA remains a single cytopenia, and the overall prog-
nosis is better than in many of the other marrow failure disorders.

Transient Erythroblastopenia of Childhood

Acute erythroblastopenia in previously hematologically nor-
mal children was first described by Gasser (724) in 1949 in 12
children in whom erythroblastopenia followed toxic, allergic,
or infectious episodes. These children recovered rapidly and
did not develop anemia. Baar then studied RBC lifespan in
an 8-year-old with “complete transient aplasia of the erythro-
poietic tissue” (775). The term erythroblastopenia of childhood
was first used by Wranne in 1970 to describe four cases with
temporary red cell aplasia (776). More than 500 cases have
been reported since 1970, as detailed case reports and as
series of cases without individual data (5,6,697). TEC is
defined as peripheral blood reticulocytopenia, usually with
anemia and with bone marrow erythroblastopenia and nor-
mal white blood cell and platelet counts, and is temporary in
duration. Some of the younger patients with TEC were some-
times initially thought to have DBA; Table 8-19 lists several
features that distinguish the two conditions.

The male to female ratio is 1.3:1 among those with TEC. It is
an acquired condition and occurs at a median of 23 months of

TABLE 8-19. Comparison of Diamond-Blackfan Anemia and Transient
Erythroblastopenia of Childhood

Transient Erythroblastopenia

Diamond-Blackfan Anemia of Childhood
Number of reported cases >700 >500
Male/female 1.1 1.3
Age at diagnosis (mo)
Mean 11 26
Median 3 23
Range 0-768 1-192
Patients older than 1 yr of age at 12% 84%
diagnosis
Etiology Genetic Acquired
Antecedent history None Viral illness
Physical examination abnormal 25% 0%
Laboratory
Hemoglobin g/dL 1.2-14.8 2.2-12.5
White blood cells <5000/pL 15% 20%
Platelets >400,000/puL 20% 45%
Red blood cell adenosine deami- Increased Normal
nase
Mean cell volume increased at 80% 5%
diagnosis
During recovery 100% 90%
In remission 100% 0%
Fetal hemoglobin increased at 100% 20%
diagnosis
During recovery 100% 100%
In remission 85% 0%
i Antigen increased 100% 20%
During recovery 100% 60%
In remission 90% - 0%

Adapted from Alter BP. The bone marrow failure syndromes. In: Nathan DG, Oski FA, eds. Hematology of infancy and

childhood, 3rd ed. Philadelphia: WB Saunders, 1987:159-241; and Link MP, Alter BP. Fetal erythropoiesis during recov-
ery from transient erythroblastopenia of childhood (TEC). Pediatr Res 1981 ;15:1036-1039.
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Figure 8-26. Age at diagnosis in more than 500 published cases with
transient erythroblastopenia of childhood (TEC). Compare this figure with
Figure 8-19 for Diamond-Blackfan anemia.

age (Fig. 8-26). More than 80% of patients who were studied
were older than 1 year of age, compared to only approximately
10% of those with DBA in the same age range (compare Figs. 8-
19 and 8-26). Only 10% of TEC patients were older than 3 years
of age, and only four patients were older than 10 years of age;
the oldest was 16 years of age.

The presenting symptom of TEC was pallor in a previously
normal child, in whom prior normal blood counts were some-
times available. More than one-half of patients gave a history
of a preceding illness (the median time interval between the
prior illness and TEC presentation was 1 month, with a range
of 0 to 4 months), which was usually viral—upper respiratory
or gastrointestinal. Because these illnesses are common in
young children, their relevance is difficult to ascertain,
although a viral cause of the aplasia is appealing (see the sec-
tion Pathophysiology). A few children had neurologic mani-
festations of anemia: seizures, breath holding, or transient
ischemic attacks (777-785). Drug or toxin exposure included
piperazine, aspirin, sulfonamides, valproic acid, phenytoin,
and phenobarbital (782,786-790).

Familial TEC has been recorded rarely. Identical and frater-
nal twins had simultaneous onset of anemia (787,791,792). Four
pairs of siblings had TEC at similar ages, but 2 to 3 years apart
in onset (792,793). In these familial cases, TEC might have been
caused by the same viral or environmental factor, combined
with a genetic propensity. TEC has been reported from 17 coun-
tries, and cases have included blacks, Hispanics, and Japanese.
Most of the reports have been from temperate climates.

TEC is somewhat seasonal, with the largest numbers of cases
from the Northern Hemisphere occurring between October and
January. However, the number of cases with this information is
sufficiently small that monthly variations may be due to chance
alone. At a given center, clusters may be due to specific local
viral epidemics. Until the putative etiologic virus is identified,
the cause remains speculative.

Physical examinations in TEC patients are normal except for
pallor, and findings relate to anemia, such as tachycardia. The
anemia is of gradual onset; thus, the pallor often is not noticed
by parents until the anemia is profound.

LABORATORY FINDINGS
Hgb levels ranged from 2.2 to 12.5 g/dL, with a median of 5.6
g/dL. Reticulocytes were less than 1% in most of the children.
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White blood cell counts were generally normal, but the abso-
lute neutrophil count was less than 1000/uL in approximately
6% of the patients, and thrombocytopenia of less than
100,000/ uL was reported in approximately 5%, some of
whom were also neutropenic. It is possible that whatever sup-
presses the erythroid series may affect all cell lines in a few
patients. Twenty percent had white blood counts greater than
10,000/pnL, which perhaps is associated with intercurrent
infections, although one patient did have true leukoerythro-
blastosis, perhaps due to marrow stimulation by hypoxia
(794). Platelet counts greater than 400,000/ pL were noted in
almost one-half the patients, which is more than the propor-
tion of DBA children with increased platelet counts. The
MCVs were usually normal for age, with mean and median of
80 fL, although the range was from 62 to 112 fL.. HbF levels
also were usually normal, although the range was from 0.2%
to 9.2%. A suggestion from one small study that blood group
A patients predominate (759) was not borne out in another
small study (795). Bone marrow examinations showed signif-
icant to profound erythroblastopenia in more than 90% of
patients. In those in whom erythroblasts were seen, a matura-
tion arrest was often present. Marrow lymphocytes were fre-
quently elevated and led to the incorrect diagnosis of acute
leukemia in at least one case (796). The 5% to 10% of patients
with reticulocytosis or erythroid hyperplasia at presentation
presumably had begun to recover without the benefit of med-
ical attention.

Several erythrocyte characteristics may distinguish TEC
from DBA. Wang and Mentzer (797) pointed out that the RBCs
in TEC were adult or normal for age in MCV, HbF, i antigen,
and RBC enzyme levels. In DBA, these parameters were more
fetal-like. This distinction, which is based on normal versus
fetal-like features, is only relevant to the reticulocytopenic
patient at the time of diagnosis. During recovery from TEC, the
RBCs have the features of stress erythropoiesis and are identical
with those seen during any bone marrow recovery. This tran-
sient cohort of fetal-like erythrocytes can be detected as soon as
the first reticulocytes appear, using a sensitive immunologic
assay for F-reticulocytes (798,799). As Link and Alter (795) doc-
umented, this cohort of fetal-like erythrocytes then evolves
again into normal RBCs. Thus, interpretation of fetal-like fea-
tures depends on the stage of the disorder, and the ultimate dis-
tinction between TEC and DBA may be clear only from the
outcome. Macrocytosis, elevated HbE, and reticulocytopenia, as
well as marrow erythroblastopenia, in a child younger than 1
year of age most likely indicate DBA. Elevated RBC ADA is
found in DBA and not in TEC (677).

PATHOPHYSIOLOGY

A viral cause for TEC is most likely. The history of an antece-
dent (usually viral) illness that presents 2 months before TEC
is intriguing. Suppression of erythropoiesis in a normal person
would require symptom duration of 1 to 2 months to be mani-
fest as symptomatic anemia. It is not clear why recovery
would then occur within another month. If the cause is viral,
the time course of the development of specific antibodies
would be relevant. The prime suspect is parvovirus. However,
almost 50 cases have been analyzed individually or by one
laboratory for parvovirus antibody, but only 20% of cases were
found to have antibody, and causality remains to be proven.
Because parvovirus inhibits the growth of CFU-E, it is logical
that this particular virus leads to aplasia in patients with
shortened RBC survival due to hemolytic anemia. Its role in
those with previously normal erythropoiesis has not yet been
proven and requires sensitive assays for antigen or for par-
voviral DNA.
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Several groups have investigated the erythropoietic defect in
TEC. Levels of EPO are high (800). Erythroid progenitor cell cul-
tures have provided a wide variety of results. A consensus of all
of the culture studies is difficult to reach, because not all param-
eters were examined in all patients. Probably one-half of all
cases of TEC have reduced erythroid progenitor cell numbers.
More than one-half of cases have serum inhibitors in autolo-
gous or allogeneic cultures, usually IgG. Inhibitory mononu-
clear cells may be present in one-fourth of cases. No patients
had serum and cellular inhibitors, but few were examined for
both (697). TEC may be due to an as yet unknown virus, which
may infect CFU-E and not be cleared until specific antibodies
develop to the virus. In some cases, a specific IgG may be
directed against epitopes on erythroid progenitors themselves,
thus inhibiting growth of autologous or allogeneic erythroid
colonies. Recovery in these cases might require antiidiotype
antibodies.

THERAPY AND OUTCOME

As indicated by the name of this disorder, TEC is transient,
and all patients recover. Recurrent TEC was observed only
twice and occurred within 1 year (800,801). Most patients
show signs of recovery within the first month after diagnosis,
and 5% to 10% of patients have already begun to recover when
they are first seen. The longest interval to recovery without
recurrence was 8 months, and only nine patients took more
than 4 months to recover. No treatment was necessary for
approximately one-half of the patients for whom the clinical
course was described. In most patients, the nadir Hgb was
reached by the time they were seen. More than one transfusion
was needed in less than 10% of patients. Prednisone was

administered to 10% to 20% of patients, but reticulocytes.

appeared within 1 day in many patients, a phenomenon that is
almost certainly unrelated to the treatment.

Our recommendation for TEC is watchful waiting, with
transfusion only when anemia leads to cardiovascular compro-
mise. These children tolerate their anemia extremely well,
because it has developed gradually, and it is often the cardio-
vascular status of the physician rather than the patient that
leads to transfusion. Prednisone, anabolic steroids, and other
immunosuppressive therapies have no apparent role in the
management of TEC. The prognosis is excellent, and the distinc-
tion from DBA is simple in retrospect (Table 8-19).

Congenital Dyserythropoietic Anemia

Dyserythropoiesis refers to ineffective, morphologically abnor-
mal erythroid production. Dysplastic indicates qualitative
abnormalities of the stem cell or the microenvironment. Aplas-

tic refers to quantitative abnormalities of the same compart-
ments. Although these congenital conditions are not, strictly
speaking, bone marrow failure syndromes, they are inherited
marrow disorders, which may result in anemia without reticu-
locytosis. Erythropoiesis is ineffective, because a discrepancy
exists between erythroid output from marrow to circulation
(anemia) and erythroid marrow content (erythroid hyperpla-
sia), thus implying intramedullary destruction.

In healthy persons, approximately 1 in 1000 bone marrow
erythroblasts is abnormal (802). Multinucleated erythroblasts
and karyorrhexis are occasionally seen in megaloblastic anemia,
iron deficiency, leukemia, and hemolytic anemia, and are indic-
ative of bone marrow stress. The incidence of dyserythropoietic
erythroblasts may be substantial in acquired or inherited aplas-
tic anemia. In one study of aplastic anemia, 5% to 90% of eryth-
roblasts were megaloblastic or showed nuclear-cytoplasmic
asynchrony, 1% to 3% were binucleate, and as many as 5% had
cytoplasmic connections or chromatin bridges (803). During
recovery from BMT, all patients transiently had as many as 30%
dyserythropoietic erythroblasts (804). These morphologic
abnormalities are more extreme in congenital dyserythropoietic
anemia (CDA) than in aplastic anemia or in marrow transplan-
tation recovery.

All patients with CDA have anemia with insufficient reticu-
locytosis and ineffective erythropoiesis, and all ethnic groups
are affected. The major types of CDA were described in detail in
a book by Lewis and Verwilghen (805) in 1977 and are summa-
rized in a recent review by Wickramasinghe (806). Table 8-20
outlines the major types:

Type I: macrocytosis, with bone marrow megaloblastoid
changes and internuclear chromatin bridges between cells.

Type II: normocytosis or macrocytosis, with binucleated and
multinucleated erythroblasts, pluripolar mitoses, and karyor-
rhexis.

Type III: macrocytosis, with erythroblastic multinuclearity of
up to 12 nuclei (gigantoblasts).

Types I and III are diagnosed primarily by bone marrow mor-
phology. Type II is characterized by positive reaction to some
acidified normal sera [which is called hereditary erythroblastic
multinuclearity with a positive acidified serum (HEMPAS) test
(807)]. More than 50 additional cases have been reported that do
not clearly fit into types I to TIL

TYPEI

More than 100 cases of type I CDA have been reported [the first
20 cases were reported by Heimpel (808,809)]. The onset of ane-
mia, jaundice, or both, ranges from infancy to old age, with a
median age of onset of 10 years of age. The male to female ratio is

TABLE 8-20. Types of Congenital Dyserythropoietic Anemias

Feature Type | Type ll Type il
Reported cases 130 200 60
Male/female ratio 1.1 0.9 0.8
Anemia Mild-moderate Moderate Mild-moderate
Red cell size Macrocytic Normo- or macrocytic Macrocytic

Bone marrow erythroblasts
chromatin bridges

Inheritance Recessive
Acid serum hemolysis Negative
Anti-i reaction Slight
Anti-| reaction Slight
Effect of splenectomy (%) 50

Megaloblastoid, binucleated (2-5%),

Bi- and multinucleated (10~
40%), karyorrhexis

Gigantoblasts (10-40%)

Recessive Dominant
Positive Negative
Strong Slight
Strong Slight

96 100




1.1:1.0, and the inheritance is autosomal recessive. Consanguinity
was reported in at least 15 families, and affected siblings or cous-
ins were reported in almost 20. Physical examination may show
icterus and splenomegaly, as well as brown skin pigmentation; a
few patients had toe syndactyly or abnormal fingers.

The anemia is often mild, with a median Hgb of 9 g/dL
and a range of 2 to 15.g/dL. Reticulocytes range from 1% to
7%. RBCs are macrocytic, with a median MCV of 100 fL and a
range of 66 to 133 fL. The blood film shows anisocytosis,
poikilocytosis, punctate basophilia, and occasional Cabot’s
rings. White blood cells and platelets are normal. Indirect
bilirubin is elevated (1 to 4 mg/dL), as is serum lactate dehy-
drogenase, whereas haptoglobin is low and transferrin is satu-
rated. Plasma iron turnover is as much as ten times the normal
rate, and RBC utilization is reduced to less than 30%. RBC sur-
vival is slightly shortened, with a chromium-51 (*!Cr) half-life
of 15 to 28 days (with a mean 21 days). Globin synthesis stud-
ies usually show non-« to o ratios of 1, although an imbalance
of 0.5 to 0.7 was observed occasionally (810,811). Negative
reactions are seen in the acidified serum test, and i antigen
titer is usually in the adult low range, in contrast to that seen
in type I CDA.

Bone marrow examination shows marked erythroid hyper-
plasia (812). The abnormalities are confined to the more mature
erythroblasts and the polychromatophilic and orthochromatic
series (Fig. 8-27). Nuclear maturation and cytoplasmic matura-
tion are dissociated, and nuclei are immature and megaloblas-
toid. As many as 2% of erythroblasts are large cells with
incomplete nuclear division, often with double nuclei in which
one component is more mature than the other. As many as 2%
of cells show thin chromatin bridges that connect the nuclei of
two cells. Electron microscopy demonstrates widening of
nuclear membrane pores in mature erythroblasts, with conden-
sation, vacuolization, and disintegration of nuclear chromatin,
with cytoplasmic penetrance. Structural changes are found in
the nucleolus, microtubules, and siderotic material in the cyto-
plasm (812-814). '

The defect in CDA is at the stem cell level. The numbers of
CFU-E and BFU-E are normal, but the colonies contain a mix-
ture of normal and abnormal cells, when they are examined
by electron microscopy (815). This suggests that the abnor-
mality is expressed variably in the mature progeny of each
stem cell.

Figure 8-27. Bone marrow from a patient with congenital dyserythropoi-
etic anemia type I. A: Dot and leader indicate binucleate erythroblast with
nuclei of different sizes and maturity. B: Dot and leader indicate internu-
clear chromatin bridges that connect two erythroblasts. (From Lewis SM,
Verwilghen RL, eds. Dyserythropoiesis. London: Academic Press, 1977,
with permission.)
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The gene for CDAI(CDAN1) was mapped in a large Israeli
Bedouin kinship to chromosome 15q15.1-15.3 (816). However,
several other unrelated patients of Lebanese and English ori-
gin did not have haplotypes that linked to this region, thus
suggesting that there is genetic heterogeneity in CDA type I
(817).

Treatment with the usual hematinics, such as vitamins,
metals, and steroids, is without effect. A few transfusions were
required in 20% of patients. Splenomegaly is common, but
splenectomy (reported in 10% of cases) does not improve the
anemia. Some patients develop gallstones from the hemolytic
anemia. Hemosiderosis is the most important long-term com-
plication because of increased intestinal absorption of iron,
ineffective erythropoiesis, and mild hemolysis; phlebotomy or
iron chelation with deferoxamine warrants consideration.
Four of the patients were reported to have died, one at 10
years of age from complications of splenectomy, one at 84
years of age from old age, and two from persistent pulmonary
hypertension in infancy (818,819).

The beneficial effect of interferon-o was discovered during
treatment of a patient with CDA type I for posttransfusion
chronic hepatitis C (820) and was confirmed in several other
patients (821-823). A potential mechanism was suggested by
the observation that Epstein-Barr virus transformed B lympho-
blasts from patients with CDA type I produce less interferon-o
in vitro than do normal cells (823). Addition of interferon-o. to
erythroid cultures improves the ultrastructural Swiss-cheese
appearance of erythroblasts (824).

Successful bone marrow transplant was reported in one case,
using a sibling donor (825).

TYPEII

Type II CDA, also known as HEMPAS, has been reported in
approximately 200 patients. Many of the early cases were
summarized by Verwilghen (826,827). More than two dozen
cases were in sibships, and 11 cases were in families with con-
sanguinity. The male to female ratio was 0.9:1, and the inheri-
tance is autosomal recessive. Anemia is noted between infancy
and adulthood, at a median of 14 years of age, and varies from
mild to more severe anemia that requires regular transfusions.
The median Hgb was 9.5 g/dL, and the range was from 3 to 15
g/dL. Jaundice, hepatosplenomegaly, and gallstones are more
common in patients with type II CDA than in those with type
ICDA.

Although anemia may be severe in patients with type II
CDA, reticulocytosis is inadequate and averages 4%. RBCs are
usually normochromic and normocytic, although macrocyto-
sis has been observed; the median MCV is 94 fL, and the range
is from 73 to 114 fL. The smear shows anisocytosis, poikilocy-
tosis, teardrops, and basophilic stippling, all of which are non-
specific findings. The anemia and the RBC lifespan are worse
in type Il CDA than in type I CDA patients; the 5Cr half-life
averages 17 days (with a range from 7 to 31 days).

Electron microscopy shows an excess of endoplasmic reticu-
lum parallel with the cell membrane, which leads to the appear-
ance of a characteristic double membrane, or cistern, in late
erythroblasts and some erythrocytes (813,814). Many patients
with type I CDA also have bone marrow reticuloendothelial
cells that resemble Gaucher cells, with birefringent, paraami-
nosalicylic acid-positive, needlelike inclusions. These inclusions
may be the products of catabolism from the rapidly turning-over
marrow erythroblasts. The marrow shows erythroid hyperplasia,
with binucleated and multinucleated mature erythroblasts in
10% to 40% of the erythroid precursors (Fig. 8-28). The internu-
clear chromatin bridges of type I CDA are not seen, nor is the
multinuclearity as extreme as is seen in type I CDA.
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Figure 8-28. Bone marrow from a patient with congenital dyserythro-
poietic anemia type I, showing binucleated and multinucleated erythro-
blasts. (Courtesy of Dr. Gail Wolfe. From Alter BP. The bone marrow
failure syndromes. In: Nathan DG, Oski FA, eds. Hematology of infancy
and childhood, 3rd ed. Philadelphia: WB Saunders, 1987:159-241,
with permission.)

The pathognomonic findings in HEMPAS are serologic
(807,828,829). HEMPAS RBCs are lysed by approximately 30%
of acidified sera from normal persons, but not by the patient’s
own serum. In contrast, in paroxysmal nocturnal hemoglobin-
uria, patient cells are lysed by acidified patient serum. In CDA
type II, the RBCs have a specific HEMPAS antigen, and many
normal sera contain an anti-HEMPAS IgM antibody. In some
cases of type II CDA, up to 30 normal sera must be examined
until a positive acidified test results; some were thought not to
be type I CDA until this was obtained (830). HEMPAS erythro-
cytes are also distinct in that they are more strongly aggluti-
nated with anti-i antibody than cells of newborn infants or of
patients with stress erythropoiesis (831). Fluorescent labels
demonstrated i antigen on all RBCs in HEMPAS, Heterozygotes
also have increased expression of i antigen (807,832). HEMPAS
RBCs also express increased amounts of I antigen. HEMPAS
erythrocytes were shown by Rosse et al. (833) to bind a normal
amount of complement C1, but more antibody and less C4 than
normals. This causes binding of an excess of C3 and hemolysis.
The RBC plasma membrane abnormality in HEMPAS is related
to decreased N-glycan synthesis near the N-acetylglucosami-
nylphosphotransferase II and a-mannosidase II steps (834).
Bands 3 and 4.5 lack glycosylation with lactosaminoglycans
(835).

The number of erythroid progenitors is probably normal in
marrow and blood. Although one study found only normal
morphology of the erythroblasts that were produced in culture
(836), other studies reported multinuclearity that was similar to
that seen in the bone marrow (837,838). As in type I CDA, the
defect in type II CDA is in the erythroid stem cell and is
expressed variably in more mature erythroblasts.

One gene for CDA I (CDAN?2) was localized to chromosome
20q11.2 by a genome-wide search using 12 Italian families and
one French family (839). Further studies indicated that the
majority of the Italian CDA type II patients linked to 20q11.2,
but this was not due to a founder effect (840). Two other Italian
families were not linked to this locus (841), and other patients
were found to have mutations in the genes for o-mannosidase II
(834). Thus CDA II has genetic heterogeneity.

Patients whose anemias are severe are supported by blood
transfusions. Unlike in type I CDA, splenectomy is effective

in approximately 70% of type II cases and leads to an
increase in RBC lifespan and abrogation of transfusions. Iron
accumulation, from transfusions and from increased intesti-
nal absorption, is a major complication, even in untransfused
patients. Phlebotomy and iron chelation have a definite role
in the management of patients with type Il CDA (842). Two
of the patients died of hemochromatosis at 25 and 30 years of
age.

# Some of the phenotypic heterogeneity in CDA I could be
related to coinherited Gilbert syndrome; serum bilirubin
levels and gallstones were increased in patients with the
homozygous A(TA)7TAA box variant of the UGT1A gene,
which leads to reduced expression of uridine diphosphate
glucuronosyl transferase (843). Similarly, iron overload was
increased in a patient with CDA type II and hereditary hemo-
chromatosis due to homozygous C282Y mutation in HFE
(844).

TYPE IlI
Approximately 70 patients have been reported in 16 families
with type IIl CDA (845,846). The male to female ratio was
0.8:1.0. Three families had apparently dominant CDA,
Wwhereas three had affected siblings, and one had consanguin-
ity. The median age at diagnosis was 24 years of age, with a
range from birth to old age, similar to that in types I and II
CDA. Anemia is mild to moderate, and MCVs may be normal
or increased (with a median 94 fL and a range from 79 to 135
fL). The bone marrow shows erythroid hyperplasia, with
multinuclearity in 10% to 40% of erythroblasts, including
some large gigantoblasts with up to 12 nuclei (Fig. 8-29).
Hemolysis does not occur with acidified sera, and reactions
with anti-i antigen are similar to those seen in stress erythro-
poiesis. RBC survival is slightly shortened, with a 5!Cr sur-
vival half-life of 21 days. The defect is in the stem cell, and in
vitro culture results in colonies that contain normal and
abnormal erythroblasts (847).

The gene for CDA III, CDAN3, was mapped to 15q21-25in a
large Swedish family that was the subject of many reports (848).

The need for transfusions or splenectomy is rare. As in the
other CDAs, hemosiderosis is the major problem and resulted
in the death of one patient who was 42 years of age. Members of
the Swedish family have an increased risk of monoclonal gam-
mopathy, myeloma, and ocular angioid streaks (849).

Figure 8-29. Bone marrow from a patient with congenital dyserythropoie-
tic anemia type ll, showing multinucleated erythroblast. (Courtesy of Dr.
Gail Wolfe. From Alter BP. The bone marrow failure syndromes. In: Nathan
DG, Oski FA, eds. Hematology of infancy and childhood, 3rd ed. Philadel-
phia: WB Saunders, 1987:159-241, with permission.)




ARIANTS
ore than 50 patients have been reported with apparent CDA

u that does not conform to the types that were previously
- described (806). In rare cases, the bone marrow morphology
.. resembled type I CDA, but the cases were classified as type IV

CDA, because the acidified serum tests were negative, which
might indicate only that an insufficient number of sera were
examined. The level of i antigen was not increased. The inher-
itance was apparently dominant in one family; thus, at least
some of these cases might indeed belong to a different type
(850-854). Anemia was mild in all but one case and was diag-
nosed from infancy to adulthood. Binucleated erythroblasts
made up 10% to 40% of the marrow erythroblasts. The clinical
course was relatively benign in the reported cases, with sple-
nectomy in only one.

Another group of patients was termed CDA with thalassemia
(855-861). One family had dominant inheritance, and another
family had three affected siblings. The age at diagnosis ranged
from infancy to old age, the anemia was mild to moderate,
MCVs ranged from microcytic to macrocytic, and multinuclear-
ity was present in 25% to 35% of the erythroblasts. Tests with
acidified sera were negative, and i antigen was positive in two
of the three families. Globin chain synthesis was imbalanced,
with B to o ratios of 0.5, which is similar to those seen in B-

. thalassemia trait. There may have been a coincidence of thalas-

semia trait and CDA, but two families were from ethnic groups
without a high incidence of thalassemia.

Almost 40 other patients were reported with CDAs that are
even more difficult to classify. Five families had an affected
parent and child, two had consanguinity, and three had
affected siblings. These cases all may represent different dis-
orders. The proportion of binucleated or multinucleated
erythroblasts was always low, less than 4%. In some, the mor-
phology resembled type I CDA, with rare internuclear

SINGLE CYTOPENIAS: WHITE BLOOD CELLS 251

bridges, as well as type II CDA, with symmetric binuclearity,
karyorrhexis, and even double membranes by electron
microscopy. The ages at diagnosis of anemia ranged from
birth to adulthood, and the anemia ranged from mild to
severe. MCVs encompassed the entire spectrum. Acidified
serum testing was usually negative, i antigen was variable,
and RBC 'Cr half-life ranged from 5 to 29 days. Splenectomy
was reported in eight patients, with occasional efficacy. Ery-
throid cultures from one case demonstrated that multinucle-
arity was present in some cells in each colony, which indicates
a stem cell disorder, as in the other CDAs (862). The clinical
variability suggests that these cases may represent several
types of CDA. Perhaps these patients are double heterozy-
gotes, instead of homozygotes, for recessive CDA genes.

SINGLE CYTOPENIAS: WHITE BLOOD CELLS

Severe Congenital Neutropenia

Inherited isolated neutropenia was first recognized as a dis-
tinct entity in 1956 by Kostmann (863,864), who called it infan-
tile genetic agranulocytosis. Other names for this condition are
severe chronic neutropenia, and severe congenital neutropenia
(SCN) (see Chapter 14 for a more complete discussion of neu-
tropenia). The term Kostmann's syndrome might be reserved for
patients in whom the inheritance is clearly autosomal reces-
sive; most patients are autosomal dominants or sporadic new
mutations. In this section, the term SCN is used for cases in
which neutropenia is less than 200/pL, with severe pyogenic
infections in infancy and a bone marrow myeloid arrest at the
promyelocyte-myelocyte stage. More than 300 cases in the lit-
erature fit this description (Table 8-21). The male to female
ratio is 1. Most of Kostmann's original 14 and subsequent ten

TABLE 8-21. Congenital Neutropenia Literature

Reported on or before 1989  Reported after1989 All Patients
Number of cases 128 178 306
Maleffemale 55/68 90/81 145/149
Ratio 0.8 1.1 1
Leukemia
Number of cases (%) 3(2) 23 (13) 26 (9)
Maleffemale 211 14/9 16/10
Age at diagnosis (yr)
Mean 14 11.1
Median 14 12 —
Range 14-14 2-23
MDS?
Number of cases (%) 00 13 (7) 13 (5)
Maleffemale 8/5 8/5 —_
Age at diagnosis (yr)
Mean 113 11.8 —
Median 1 11 —
Range 1-22 1-22
Deceased
Number of cases (%) 67 (52) 15 (8) 82 (30)
Maleffemale 26/37 9/6 35/43
Age at death (yr)
Mean 2.1 6.9 3
Median 0.7 33 0.8
Range 0.05-20 0.1-23 0.05-23
Projected median age 3 — 23
for all patients (yr)
Leukemia 14 23 14.8
MDS -_— 23 23

MDS, myelodysplastic syndrome.

“Includes four patients with bone marrow cytogenetic clones but without morphologic MDS.
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cases were members of a large intermarried kinship in north-
ern Sweden, which led to the suggestion that the inheritance is
autosomal recessive (865). Cases have been reported in all eth-
nic groups, including blacks, Native Americans, and Asians.
At least a dozen cases were in families with parental consan-
guinity, and more than 20 families had affected siblings. How-
ever, eight families appear to have dominant inheritance (866).

Age at presentation is young, with 50% of the patients symp-
tomatic within the first month after birth and 90% symptomatic
by 6 months of age. In fact, the few who were diagnosed later in
life may not have had the same diagnosis. Birth weights are
generally normal, as are physical examinations, except for signs
of infection, such as skin abscesses.

LABORATORY FINDINGS

Neutropenia is extreme in these patients, although several
infants had almost normal absolute neutrophil counts in the
first week or two of life, which declined rapidly thereafter. The
average absolute neutrophil count is less than 200/pL; many
patients have total neutropenia. Eosinophils and monocytes
are frequently high (as many as 50% monocytes in some
patients), but these are not as effective as phagocytes as are
neutrophils. Ig levels are also frequently increased. Congenital
neutropenia is a single cytopenia, because the Hgbs are usually
normal (with a mean level of 10 g/dL), and platelet counts are
normal or even high. Bone marrow is cellular, with absent or
markedly decreased myeloid precursors. When precursors are
present, there is an arrest at the myelocyte or promyelocyte
stage.

PATHOPHYSIOLOGY

Congenital neutropenia primarily affects the neutrophil series.
Bone marrow cultures have decreased, increased, or, most
often, normal numbers of colony-forming units (colony-
forming unit culture). The colonies, which contain neutrophils
in normal persons, that do grow in semisolid media have been
reported rarely to contain neutrophils (867) or, more frequently,
to contain eosinophils, monocytes, and abnormal or arrested
myeloid precursors (868). A block in myeloid differentiation
was also seen in long-term cultures from some patients (867).
Thus, in some patients the in vivo defect in myeloid differentia-
tion is apparent in vitro.

Recently linkage analysis in familial cases of autosomal-
dominant cyclic neutropenia mapped the locus to 19p13.3 and
identified mutations in the neutrophil elastase gene (ELA2) at
that locus (869). The same group then showed that 22 of 25
patients with SCN had 18 different heterozygous mutations in
ELA2 (870). The mutations in cyclic neutropenia cluster around
the active site of the enzyme, whereas the mutations in SCN are
on the opposite face. Thorough investigation of the mutant and
wild-type proteins led to the conclusion that mutant ELA2 may
act as a dominant negative inhibitor of the function of the nor-
mal enzyme (871).

THERAPY AND OUTCOME

The prognosis for patients with congenital neutropenia was
poor in the era before G-CSF, with more than one-half of
patients reported to have died at a median of 7 months of
age, with a range of 2 weeks of age to 20 years of age. The
Kaplan-Meier survival curve (Fig. 8-30) for this group indi-
cates a projected median survival of 3 years of age, and only
10% of patients are long-term survivors. Most of the deaths
were from sepsis or pneumonia. No cases evolved into aplas-
tic anemia, which shows that congenital neutropenia is a true
single cytopenia. Infections were treated with antibiotics,
and many patients received prophylactic treatment. Lithium
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Figure 8-30. Kaplan-Meier plot of cumulative survival in severe congeni-
tal neutropenia (SCN). Time is shown as age in years. Lines represent 128
patients who were reported in the era before granulocyte colony-stimulat-
ing factor (before 1989) and 178 patients who were reported after granu-
locyte colony-stimulating factor (after 1989).

therapy was suggested because of its ability to raise white
counts in hematologically normal persons, but it was rela-
tively ineffective in congenital neutropenia (872,873). BMT
cured one patient (874), but the graft was lost in another
(875).

The most exciting therapeutic advance was the use of recom-
binant growth factors. Subcutaneous G-CSF is effective at rais-
ing neutrophil counts in children with congenital neutropenia
in a dose-related manner. The factor must be administered
chronically, but it seems to be without major short-term side
effects (876,877). However, bone loss has been reported and
warrants treatment (878,879).

Only 8% of the cases that have been reported since 1989 died,
at a median of 3 years of age, with a range of 1 month of age to
23 years of age and a projected plateau of 75% survival at 23
years of age. Deaths still occur from sepsis. Since 1989, bone
marrow transplant was reported in 19 patients, of whom five
died from complications; most transplants were from alterna-
tive donors (880) (Fig. 8-31).

Prenatal diagnosis was considered early for congenital neu-
tropenia, using fetal blood that was obtained in the middle tri-
mester (881). However, the absolute neutrophil count is less
than 200/pL in normal fetuses (882), and truly absolute neu-
tropenia would be required to diagnose congenital neutrope-
nia in utero. At this time, mutations in ELA2 might be sought
in utero.

Leukemia. Before G-CSF, three patients developed acute
monocytic leukemia, all at 14 years of age, and died at 4 to 6
months after diagnosis (883-885). One family was reported to
have one child with congenital neutropenia and a sibling with
acute lymphoblastic leukemia (886). Since the introduction of
G-CSF, leukemia or MDS, or both, was observed in approxi-
mately 10% of the treated patients. In a large series reported
from the Severe Chronic Neutropenia Registry in which leuke-
mia and MDS were not analyzed separately, the frequency was
9% (887). In individual case reports, leukemia occurred in 13%
of patients after 1989 and consisted mainly of AML that was
not otherwise defined, acute myelomonocytic leukemia, and
acute monocytic leukemia. MDS was reported in 7% of
patients, and monosomy 7 clonality was noted in many
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jgure 8-31. Kaplan-Meier plot of cumulative survival in six patients with
evere congenital neutropenia (SCN) after bone marrow transplantation
BMT). Time is shown as the interval from BMT in days.

atients with MDS and leukemia (887,888). Although the evo-
ution to MDS or leukemia is worrisome, G-CSF has made a
ajor contribution to the longevity of patients with congenital
eutropenia.

Somatic mutations of one of the two alleles of the G-CSF

. teceptor (G-CSF-R) have been described in several patients
- (889,890). The mutations generally result in loss of the carboxy

terminal differentiation domain of the receptor. These trun-
cated forms of the G-CSF-R are thought to have dominant
activity, which results in increased cell growth without granu-
locyte differentiation. Importantly, because only somatic
mutations in the G-CSF-R have been described, this gene is
not the underlying genetic cause of congenital neutropenia.
However, these somatic mutations may contribute to the
transformation into acute myeloblastic leukemia (891) and
have been identified before development of leukemia (892).
The precise mechanism by which the truncated G-CSF-R acts
dominantly over the endogenous wild-type allele remains
unknown. The mutant receptor may have delayed internaliza-
tion and down-regulation after ligand binding, resulting in a
sustained proliferative signal. Such a strong proliferative
drive may block the granulocyte differentiation signal that is
generated from the wild-type G-CSE-R that is encoded by the
normal allele (893).

A propensity for malignancy (leukemia) is seen in congenital
neutropenia, as in many other bone marrow failure syndromes.

SINGLE CYTOPENIAS: PLATELETS
Thrombocytopenia with Absent Radii

TAR syndrome represents a true single cytopenia, with no
reports of evolution to pancytopenia or malignancy. Compre-
hensive reviews are provided elsewhere (5,6,894-896). The
patients are often diagnosed at birth, due to the combination of
the characteristic physical appearance plus thrombocytopenia.
The pathognomonic physical finding is bilateral absence of the
radii, with thumbs present (Fig. 8-32). The presence of thumbs
differentiates TAR from Fanconi’s anemia (and from trisomy
18), in which thumbs are absent if radii are absent. Hemorrhagic
manifestations in TAR patients are often also present at birth,
with petechiae or bloody diarrhea, or both, apparent in 60% of
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Figure 8-32. Newborn infant with thrombocytopenia-absent radius syn-

. drome. Note that thumbs are present. (Courtesy of Dr. Jeffrey Lipton. From

Alter BP. The bone marrow failure syndromes. In: Nathan*DG, Oski FA,
eds. Hematology of infancy and childhood, 3rd ed. Philadelphia: WB
Saunders, 1987:159-241, with permission.)

patients within the first week of life and in more than 95% of
patients by 4 months of age.

Table 8-22 compares several features of TAR with Fan-
coni’s anemia. The inheritance pattern in TAR is autosomal
recessive, with several families reported with affected sib-
lings and consanguinity reported in three families (897-899).
The male to female ratio is 0.8:1.0. Two sets of identical twins
had TAR (900,901), whereas only one of a pair of fraternal
twins was affected (902). This finding is consistent with the
cause being genetic rather than acquired. In most cases, par-
ents of TAR patients are normal, and normal offspring of
affected mothers have been reported (894,903). A few families
involved more than one generation (aunts or uncles and
nephews or nieces, with one example of parent-child trans-
mission) or cousins (894,903-909), and one family had two
affected half-siblings (910), suggesting that dominant (or per-
haps pseudodominant) inheritance might be relevant in a few
families. Although all ethnic groups are affected, including
blacks, reports of Asians are rare; however, this may reflect a
reporting, rather than a genetic, bias (911).

All TAR patients have absent radii, with thumbs present
(Fig. 8-32). Most are affected bilaterally, with only five appar-
ently bona fide cases in which the absent radius was unilat-
eral, and the hematologic picture was typical (912-916). Short
stature is common in TAR and Fanconi’s anemia patients, but
those with Fanconi’s anemia are often smaller. The other hand
abnormalities in TAR are shortening of the middle phalanx of
the fifth finger, clinodactyly, occasional finger syndactyly, and,
sometimes, hypoplasia of the thumbs. Additional abnormali-
ties of the forearms may include absent ulnae or ulnar shorten-
ing or bowing in 40% of patients. Approximately one-third of
patients have abnormal upper arms, with either short or
absent humeri; the ulnar or humeral lesions are usually bilat-
eral. Scapular hypoplasia and web necks further account for
abnormal upper body appearances, along with micrognathia
and occasional brachycephaly or microcephaly. Hypertelorism,
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TABLE 8-22. Comparison of Thrombocytopenia-Absent Radius Syndrome and Fanconi’s Anemia

Feature Thrombocytopenia-Absent Radius Syndrome Fanconi’s Anemia

Number of reported cases 225 1200
Median age at diagnosis (yr) 0 8
Male to female ratio 0.8:1.0 1.2:1.0
Inheritance Recessive Recessive
Low birth weight (%) 9 11
Stature Short Short
Skeletal deformities

Absent radii, thumbs present (%) 100 0

Hand anomalies (%) 40 43

Lower limbs (%) 37 8
Cardiac anomalies (%) 8 6
Skin

Hemangiomas (%) 8 0

Pigmentation (%) 0 55
Blood Thrombocytopenia Pancytopenia
Marrow Absent megakaryocytes Aplastic
Marrow colonies decreased Colony-forming unit megakaryocyte Colony-forming unit granulocyte-macrophage,

colony-forming unit erythroid

Fetal hemoglobin Normal Increased
Chromosome breaks Absent Present
Malignancies (%) 1 16
Reported deaths (%) 20 38
Projected median survival (yr) — 20
Survival plateau Approximately 75% at 4 yr None

epicanthal folds, strabismus, and low-set ears are also seen, as
are facial hemangiomas (in 10%).

The lower limbs are abnormal in 40% of patients. Abnormal-
ities include deformed, subluxed, or hypoplastic knees (917);
dislocated hips or patellae; and varus or valgus rotation at hips,
knees, or feet. Short legs and absent tibiae or fibulae have been
observed. Congenital heart disease (in 10% of patients) includes
atrial or ventricular septal defects, tetralogy of Fallot, dextrocar-
dia, and ectopia cordis. A few patients had gonadal anomalies,
such as undescended testes, hypoplasia, unicornuate uterus,
and vaginal atresia. Low birth weight was observed at term in
15% of the babies.

A major distinction of TAR from Fanconi’s anemia is that, in
Fanconi’s anemia, thumbs are absent when radii are normal. In
addition, TAR involves only thrombocytopenia, whereas Fan-
coni’s anemia eventually develops pancytopenia. There are four
reports of trisomy 18 with absent or hypoplastic radii or throm-
bocytopenia, or both (918-921), but they are distinguished by
other characteristic anomalies, as well as the cytogenetic abnor-
mality. Roberts” syndrome and SC phocomelia may have a sim-
ilar phenotype (922,923). Other syndromes with radial anomalies
are beyond the scope of this analysis.

Almost 20% of patients were reported to have bloody diar-
thea in infancy, which was ascribed specifically to an allergy to
cow’s milk (894,914). Removal of milk from the diet alleviates
that symptom and may perhaps lead to improvement of the
thrombocytopenia.

LABORATORY FINDINGS

Platelet counts are less than 50,000/ L at the time of diagnosis in
more than 75% of patients. Anemia is probably secondary to bleed-
ing, and reticulocytosis is usually associated. Leukocytosis is a
common finding, with white blood counts greater than 15,000/pL
in more than 75% of those reported, greater than 20,000/ pL in two-
thirds of patients, and greater than 40,000/pL in one-third of
infants. Levels of greater than 100,000/ L have been reported.
More than 12 patients had immature myeloid precursors in the cir-
culation, but none had true leukoerythroblastosis. This leukemoid
reaction has been mistaken for congenital leukemia, but it is, in
fact, transient and usually subsides during infancy. Splenomegaly

may occur due to extramedullary hematopoiesis, and eosinophilia
is not uncommon. Bone marrow examinations show normal cellu-
larity and normal or increased myeloid and erythroid cell lines,
with absence of megakaryocytes in most patients and decreased,
hypoplastic, or immature megakaryocytes in the rest.

Laboratory tests with normal results include MCV, HbF, and
studies of chromosome breakage, spontaneous and with clasto-
genic stress, which distinguish TAR from Fanconi’s anemia.
Karyotypic analysis also distinguishes TAR from trisomy 18.
Hypogammaglobulinemia was reported in one group of
patients from Nigeria but has not been a general problem (912).

Platelet size is normal, except in one report (924), and platelet .

function is generally normal (925-927), although abnormalities
of platelet aggregation and storage pool defects were reported
(924,928,929). Clinical symptoms are likely due to quantitative
rather than qualitative defects.

PATHOPHYSIOLOGY

The inheritance pattern is most likely autosomal recessive, for a
single or for more than one genetic defect, with a recurrence risk
of one in four. TAR is one of several inherited hematologic condi-
tions that are associated with radial ray anomalies (the others are
Fanconi’s anemia and DBA). In the case of TAR, only the platelet
lineage is significantly affected. Cultures of hematopoietic pro-
genitor cells indicate that the myeloid and erythroid lineages are
normal (129,930-933). Although some studies found no growth
of megakaryocytic progenitors (931-934), others found essen-
tially normal numbers (935). A unique megakaryocyte colony-
stimulating factor was increased in the plasma of one patient
(934); this was probably TPO, which is elevated (936). Unlike
amegakaryocytic thrombocytopenia (discussed previously in the
section Amegakaryocytic Thrombocytopenia), the c-mpl gene is
normal in TAR (937,938). However, because TAR is a true single
cytopenia, without evolution to aplastic anemia or leukemia, the
hematopoietic defect presumably involves only the megakaryo-
cytic lineage.

THERAPY AND OUTCOME
Most infants with TAR have hemorrhagic manifestations,

which they may outgrow after the first year of life. More than 40
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Figure 8-33. Kaplan-Meier plot of cumulative survival in thrombocytopenia~
absent radius (TAR) syndrome. The plateau is approximately 75%, with
the only death reported in a patient older than 4 years of age occurring in
a 73-year-old patient with three different types of cancer.

deaths were reported (20%), 80% of which occurred in the first
year of life. The projected survival curve is shown in Figure 8-33
and has a plateau of 75% survival by 4 years of age. Most deaths
were from intracranial or gastrointestinal bleeding. The data
cited here encompass 50 years of reports of TAR cases, many of
whom received limited treatment. Patients who survive the per-
ilous first year of life demonstrate an increase in platelet count
to greater than 100,000/uL, which is adequate for the orthope-
dic surgical procedures that are needed for their arms and legs.
Thrombocytopenia may recur during illnesses, but it usually is
not severe. Dietary change may be helpful for those with milk
allergy.

The most important therapy is platelet transfusions. These
are provided during bleeding episodes or operations and are
clearly indicated as prophylaxis for infants with severe sympto-
matic thrombocytopenia. Single donors should be used to
reduce the risk of sensitization, and HLA-matched platelets can
be obtained, if necessary. The platelet count should be main-
tained at more than 10,000 to 15,000/uL. The prediction is that
the duration of this support is finite and short (less than 1 year).
Other approaches have included splenectomy, corticosteroids,
and androgens, all without apparent benefit. One adult showed
a transient elevation of the platelet count after splenectomy
(925). A small dose of prednisone might decrease the bleeding
tendency at a given platelet count, and e-aminocaproic acid
may also be useful during bleeding episodes (see the section
Treatment, in the section on Fanconi’s anemia for details).

The leukemoid reaction and eosinophilia disappear during
the first year of life in patients with TAR, although the high
white-cell count has led to some infants being diagnosed with
congenital leukemia. One patient was reported with acute lym-
phoblastic leukemia (939), one with stage D(S) neuroblastoma
at birth who died at 3 months of age (940), and one who devel-
oped ileal adenocarcinoma at 67 year of age, ovarian cancer at
70 years of age, and bladder squamous cell carcinoma at 73
years of age (941).

Heroic treatments such as myelotoxic drugs or BMT are gen-
erally contraindicated, because spontaneous improvement
occurs. One patient who had a life-threatening central nervous
system hemorrhage was treated successfully by BMT (942). In
general, this approach is excessive, and the prognosis for TAR
patients is good.
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Prenatal diagnosis was reported in more than two dozen
cases. Absent radii may be diagnosed using radiography
(943,944), ultrasonography (945), or fetoscopy (946,947).
Because a few patients were reported with unilateral radial
aplasia, both forearms must be examined. In one case, micro-
gnathia was detected by ultrasonography (897). The diagnosis
can be confirmed by a platelet count in fetal blood that is
obtained by fetoscopy or cordocentesis (566,947,948). Seventy
percent of the 28 fetuses studied so far were affected.

LEUKOERYTHROBLASTOSIS

Leukoerythroblastosis is the term that was suggested by Vaughan
(949) in 1936 to describe “an anemia characterized by the pres-
ence in the peripheral blood of immature red cells and a few
immature white cells of the myeloid series,” that is, erythro-
blasts and leukoblasts. The RBCs are usually normochromic
and normocytic, with poikilocytes, fragments, target cells, and
teardrops. Giant platelets may also be seen. Leukoerythroblas-
tosis must be distinguished from a leukemoid reaction, which is a
reactive leukocytosis with an orderly progression of immature
through mature myeloid cells. Another related term, leukemic
hiatus, applies when the myeloid cells are immature and mature
but without intermediate forms; thus, there is a gap or hiatus.
The disorders in which leukoerythroblastosis has been seen
are outlined in Table 8-23, which is a composite of several large
adult and pediatric series (950,951). The initial descriptions
focused on the association with bone marrow invasion, particu-
larly from metastatic solid tumors, hematologic malignancies,
infections, or other marrow components, in which cells might
be crowded out of the marrow prematurely (myelophthisis).
Hypoxia from nonhematologic or hematologic causes might

TABLE 8-23. Conditions Associated with Leukoerythroblastosis

Marrow invasion
Tumor
Solid tumor with bone marrow metastases
Lymphoma
Hodgkin's disease
Multiple myeloma
Leukemia
Neuroblastoma
Preleukemia
Infection
Osteomyelitis
Sepsis
Tuberculosis
Congenital
Marrow components
Osteopetrosis
Storage disease
Histiocytosis
Vasculitis, including rheumatoid arthritis
Myeloproliferative disorders
Polycythemia vera
Myelofibrosis, myeloid metaplasia
Down's syndrome, transient myeloproliferative disease
Chronic myelogenous leukemia
Erythroleukemia
Thrombocythemia
Hematologic disease
Erythroblastosis fetalis
Pernicious anemia
Thalassemia major
Other hemolytic anemias
Hypoxia
Cyanotic congenital heart disease
Congestive heart failure
Respiratory disease
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also stimulate premature release of marrow cells. In myelopro-
liferative disorders, the premature release of nucleated cells
might be related to the intrinsic abnormality of the cells. Dis-
eases in which leukoerythroblastosis occurs are discussed in
many other chapters in this book; this section is restricted to
osteopetrosis.

Osteopetrosis

Osteopetrosis is a syndrome with three major forms: (a) infan-
tile malignant autosomal recessive, (b) intermediate autosomal
recessive, and (c) autosomal-dominant “marble bone disease,”
or Albers-Schénberg disease, which was first described in 1904
(952-954). The most severe form is diagnosed in infancy and
early childhood, and is characterized by dense bones that frac-
ture easily because of a defect in bone resorption. The patients
have large heads, sclerotic bones, and hepatosplenomegaly, and
they experience blindness, deafness, cranial nerve palsies, and
pancytopenia. Many cases are familial, with a high degree of
consanguinity. The disease may be severe in utero, because there
is often a history of stillbirths and spontaneous abortions.

LABORATORY FINDINGS

The hematologic complications of osteopetrosis are severe, with
components of leukoerythroblastosis including macrocytic ane-
mia, reticulocytosis, teardrop RBCs, circulating erythroblasts,
and leukocytosis with immature myeloid elements. One mani-
festation of the stress erythropoiesis that occurs is an increase in
HDbF (955). The marrow cavity is gradually narrowed by bone,
and the diploic spaces are small. Bone marrow aspiration is dif-
ficult, and needles often break in attempts to penetrate the scle-
rotic bone. The marrow that remains is hypocellular and
fibrotic. Osteoblasts, as well as osteoclasts, are increased (956).
Hepatosplenomegaly develops because of extramedullary
hematopoiesis. Hypersplenism follows and leads to thrombo-
cytopenia, leukopenia, and hemolytic anemia due to extracor-
puscular destruction of intrinsically normal erythrocytes (957).

PATHOPHYSIOLOGY
The osteoclasts are abnormal in osteopetrosis, as they are
unable to resorb bone and produce the remodeling that occurs
in normal bone. In experiments using osteopetrotic mice,
Walker (958) showed that bone marrow or spleen cells from
normal mice led to bone remodeling in osteopetrotic litter
mates, and spleen cells from affected mice led to osteopetrosis
in normal mice (959). Marrow transplantations that cured osteo-
petrosis and contained a cytoplasmic marker (giant lysosomes
in Chédiak-Higashi mice) replaced recipient with donor osteo-
clasts (959). Similar studies using donors with defective eryth-
ropoiesis (W¢/W") indicated that the stem cell that gives rise to
osteoclasts may be more primordial than the colony-forming
unit spleen (960). Although osteopetrosis was cured and donor
leukocytes and platelets were sustained, the defective donor
erythrocytosis was replaced by the normal erythropoiesis of the
recipient. Several laboratories have used in vitro studies to sug-
gest that osteoclasts are derived from hematopoietic stem cells
that are in the mononuclear light density fraction (961).

Hematopoiesis is intrinsically normal in osteopetrosis. The
peripheral blood contains increased numbers of CFU-GM, BFU-
E, and even CFU-E (normally found only in marrow), which
may migrate from the crowded bone marrow cavity to sites of
extramedullary hematopoiesis (962,963). Osteoclasts are
numerically normal, morphologically normal or abnormal, and
functionally abnormal.

Several genes have been found recently to be responsible for
osteopetrosis. The autosomal-dominant form maps to chromo-

some 1p21, although the candidate gene CSF-1, which is mutant
in the op/op mouse, was excluded in an extended Danish kin-
dred (964). The milder autosomal-recessive disorder, in which
there is renal tubular acidosis, was shown in 1985 to be associ-
ated with a deficiency of carbonic anhydrase II (965), and muta-
tions in carbonic anhydrase Il were identified in 1992 (966).

The severe autosomal-recessive osteopetrosis is due to muta-
tions in more than one gene. One gene maps to 11q13, syntenic
with mouse chromosome 19, the site of the murine oc mutation
(967). The murine gene is Tcirg-1, which codes for the osteoclast-
specific subunit of the vacuolar proton pump. Five of nine patients
were found to have mutations in this gene, TCIRG1 (968). The
gene is also called OC116, which is described as encoding the a3
subunit of the vacuolar adenosine triphosphatase from osteoclasts,
and was mutant in five of ten patients in another study (969). '
Another gene that is involved in the same pathway, the CLC-7
chloride channel, was mutated in 1 of 12 patients and in mice (970).
The disruption of the pathway of acidification of extracellular lyso-
some between osteoclasts and bone leads to a defect in bone degra-
dation and severe osteopetrosis. Thus there are at least two genes
that are responsible for the severe form of osteopetrosis.

THERAPY AND OUTCOME
Death usually occurs in infancy or early childhood in osteopetro-
sis patients; no patients have survived beyond 20 years of age.
Most deaths are from the complications of bone marrow failure,
infection, and hemorrhage. Circulating phagocytes, which may
be derived from the same lineage as the osteoclasts, may function
abnormally, leading to reduced host resistance to infection
(971,972). |
Symptomatic anemia and thrombocytopenia can be treated |
with transfusions of RBCs and platelets, although hypersplenism
decreases the efficacy of such treatment. Splenectomy offers tem-
porary improvement, but the rest of the reticuloendothelial sys-
tem remains active and the primary bone disorder is not cured. |
Prednisone therapy was used in several patients, again with tran-
sient improvement, from decreased hypersplenism and reticu- }
loendothelial suppression (971,973). Long-term therapy with
interferon-y was found to increase bone resorption and improve §
hematopaiesis, but did not provide a cure (974). §
The only possible cure for osteopetrosis at this time is offered
by BMT (975). More than 100 transplants have been done, witha §
3-year probability of survival of 50% (976). In those situationsin §
which a sex marker was found, the osteoclasts were of donor ori- &
gin, whereas the osteoblasts remained host. Short-term follow-up §
indicated restoration of normal hematopoiesis, improvement of 3
radiographic findings, and stabilization of physical changes. }
Long-term follow-up of nine Bedouin cases in a single center }
showed survival of four patients, with hematologic improve- |
ment but persistence of visual impairment (977), and, in another
patient, progression of neurodegeneration after transplant with a }
5/6 unrelated cord (978). Stem cell transplant must be done early, |
before the bony changes have encroached on hearing and vision.
Prenatal diagnosis by radiography was first performed in §
1943 (979), although it was not always successful (980). More
recently, increased bone density, fractures, macrocephaly, and
hydrocephaly were detected by ultrasonography and con- |
firmed by radiography (981,982). Linkage analysis was used in §
Bedouin families in which osteopetrosis was linked to 11q13; 3 i
of 12 patients were affected (983). 1

SUMMARY

The major inherited bone marrow failure disorders are summa- }
rized in Table 8-24. The diagnosis of acquired aplastic anemia "9
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should be made only after serious consideration of these inher-
ited conditions. Physical anomalies may be absent, but family
histories or specific tests (chromosome breakage or mutation
analyses) may provide clues. The number of patients with each
condition and the proportions with the cited complications can-
not be construed as prevalence figures, because they are based on
literature reports, not epidemiologic studies. Despite underre-
porting and underdiagnosis, the numbers do provide some per-
spective on these entities.

Most of the conditions that are discussed in this chapter and
summarized in Table 8-24 are expressed in probable homozygotes
(for autosomal recessives) or hemizygotes (X-linked), although a
few are dominants. Because heterozygotes for recessive disorders
cannot usually be identified (except as parents), patients with mul-
tiple bone marrow failure genes or those with apparently acquired
diseases that may in fact be inherited cannot be defined at this time.

Treatment depends on diagnosis. Patients with pancytopenia
due to Fanconi’s anemia, dyskeratosis congenita, amegakaryo-
cytic thrombocytopenia, or Shwachman-Diamond syndrome
may respond to androgens. Those with Diamond-Blackfan ane-
mia should receive corticosteroids, patients with SCN should
receive G-CSF, and patients with TAR should receive platelets.
BMT, particularly for those with Fanconi’s anemia, requires mod-
ification of current preparative protocols; patients with DBA and
TAR, which, respectively, may and do improve spontaneously,
may not need transplantation at all.

In all cases in which transplantation is used, the donor must
prove to be unaffected by the disease. Inmunotherapy and
growth factor treatment must be tailored for specific diseases.
Risks of evolution of leukemia or other malignancies must be
considered for all treatments, and those therapies with higher
risk must be considered carefully in patients whose underlying
condition is premalignant. Treatment of malignant complica-
tions is also difficult in inherited disorders in which abnormali-
ties extend beyond hematopoietic tissues.

Prenatal diagnosis is possible for many of the inherited mar-
row failure disorders. Families at risk are usually identified
through a proband, after which subsequent pregnancies may be
monitored. Early diagnosis of an affected fetus may eventually
permit treatment in utero or at birth. Diagnosis of a fetus that is
not affected and is HLA-matched to the proband may provide
placental blood for treatment by stem cell transplantation.

Much remains to be understood about the genetics, patho-
physiology, and treatment of inherited and acquired aplastic
anemia. This requires correct diagnoses, proper treatment, and
careful follow-up. The prognoses for most of these disorders
have improved with recent therapeutic advances, and it is antic-
ipated that this improvement will accelerate with more knowl-
edge of the specific molecular and cellular defects.
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