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Summary

We present a graphical measure of assessing the explanatory power of regression models with a binary
response. The binary regression quantile plot and an area defined by it are used for the visual compar-
ison and ordering of nested binary response regression models. The plot shows how well various
models explain the data. Two data sets are analyzed and the area representing the fit of a model is
shown to agree with the usual likelihood ratio test.
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1. Introduction

Prediction models estimating the probability an individual belongs to a particular
category, e.g. disease-free, are widely used in applied statistics. Numerous good-
ness of fit statistics for the fitted model have been proposed. As some try to
mimic aspects of R? in linear regression, they can also be regarded as measures of
the predictive power of the model. Several texts and articles present the most
commonly used ones and comment on their merits and shortcomings (AGRESTI,
1990, 1996; CHRISTENSEN, 1997; COLLETT, 1991; HOSMER and LEMESHOW, 1989;
McCuLLaGH and NELDER, 1989; PIGEON and HEYSE, 1999).

This article introduces a new estimation method for the explanatory or predic-
tive power of a fitted model which is based on a graph that quantifies the fitted
model’s predictive power. This should facilitate the communication of analytical
findings to subject matter specialists. The existing measures are mainly numerical.
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The proposed measure stems from the desire to visually judge and assess how
well a fitted model explains the data by investigating the scatterplot of the binary
response versus the regressor with the fitted response overlaid. Because predictor
variables may have an arbitrarily large range, we introduce a transformed graph
that plots the predicted probabilities against the percentiles of the predictor, which
may be a linear combination of several independent variables. Two regions of the
graph are identified with the gain in accuracy of prediction yielded by the regres-
sion curve relative to the sample proportion of successes (1’s). The area of these
two regions is the numerical value of our measure.

The proposed measure quantifies how much more explanatory power the fitted
model has compared to the mean of the binary response variable. Based on simu-
lations, there appears to be a monotonic relationship between the range of values
of the measure and the degree to which the fitted model explains the data. In
addition, the new measure is shown to be asymptotically normally distributed.
Two examples are presented to illustrate its use.

2. A New Graphical Measure

Let Y denote a binary response variable taking on only two values, which we will
denote by 0 and 1. Hence, ¥ has the Bernoulli distribution with Pr (¥ = 1) = p,
Pr(Y=0)=1—-p, and E(Y) =p. In the presence of a regressor variable X,
which may affect the behaviour of the distribution of ¥, E(Y|X =x)
=Pr(Y =1|X =x) =p(x); that is, p(x) is the probability that ¥ = 1 when
X = x. It is usually assumed that

E(Y [ X =x) =p(x) = G(a + Bx),

where G is a continuous cumulative distribution function, twice continuously dif-
ferentiable, with likelihood function concave in f. In practice, G is often assumed
to be either logistic or normal.

Given a random sample from (y,x), the parameters are usually estimated by
maximizing the likelihood function. The resulting maximum likelihood estimates
&, B are Jused to compute the estimate of the risk p(x) =Pr(¥Y =1|X =x)
= G(6 + Bx).

A measure of the explanatory power of a regression with a binary response
should assess how much better the model approximates Pr (Y = 1 | X) relative to
p, the mean of Y. A graphical means of quantifying this difference is by using the
area between the horizontal line y = p and the curve p(x). The larger the integral
of this region with respect to the c.d.f. of X is, the greater the information about Y

provided by X appears to be.
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The proposed measure, namely Total Gain of the model p(x) over p is defined by
¢ *

_f (p — p(x)) +f (p(x) —p)dF(x) for B >0
TG = | , (1)
j(px) p) dF(x +f(p p(x))dF(x) for B<O

\

where F is the unknown cumulative distribution function of X, and x* is the
abscissa of the intersection of the two lines, y = p and y = p(x).
Notice that
*

p=E (k) = j pdF(x) = _fx p(x) dF(x) + fop(x) dF(x).
Therefore,
f (P p(x)) dF (x) = f (p(x) — p) dF (x) . 2)

This implies that

2 fx(p—p(x))dF(x) for >0

TG = -
2 [ (p(x) —p)dF(x) for B<O
x*
or, generally
x*

16=2| | (p—p()) 4F(x) ()

It is shown in Section 2.4 that TG < 2p(1 — p), so we define the standardized
total gain, TGyq, as follows:

TG
. 4
2(1-p) @

TGy =
2.1 The Binary Regression Quantile Plot

TG is based on the area between the logistic curve and the p(x) = p line over the
entire x-range of values. An alternative plot can be obtained by expressing the
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relationship between y and x in terms of the percentiles of x. For each percentile ¢,
the corresponding value of x, x, is computed. Then, E (Y | X =x;) is plotted
against the corresponding x percentiles, where E (Y | X = x,) is the estimate from
the fitted model.

Our binary regression quantile plot is the graph corresponding to the quantile
regression function defined in RA0 and ZuAo (1995), who subsequently estimated
it non-parametrically in RA0 and ZHAO (1996). We focus on a parametric link and
use ML estimates of the parameters. Alternatively, modified ML parameter esti-
mates can be used (TIKU and VAUGHAN, 1997). The concept of the gain in predictive
accuracy is also used in the analysis of expectancy curves (Cs6RGO, GASTWIRTH and
ZITIKIS, to appear), and in measures of association based on proportional error reduc-
tion (GoODMAN and KRUSKAL, 1979; REYNOLDs, 1977).

The binary regression quantile plot assesses graphically the contribution of one
or more covariates to the explanation of a binary variable. It differs from the
receiver-operating characteristic (ROC) curve and the logit rank plot of Copas
(1999) as it does not classify subjects into high risk or low risk cases.

To obtain TG, let t=F(x). Accordingly, f*=F(x*), where p(x*)=p
= p(F71(¢*)). As dt = dF(x),

[ o-pE @) = | (o= p(w) ()
and,

[ G 0) =)t = [ o)~ p) aF(e)

yielding,
' *

TG =2 J (p—p(F~}(r))) dr. (5)

The advantage of the new plot and (5) over (3) is that the expected responses are
plotted over the unit interval as opposed to the entire x-range. The comparison of
different models is facilitated by the fact that the graphs are on the unit square and
the total gain of the fitted model over the intercept model can be visually as-

sessed.

2.2 Simulation study

The basic concepts and properties of the Total Gain measure and binary regres-
sion quantile plot will be illustrated with a simulated data set. 50 values of X are
generated from the U(0,20) distribution. The binary responses Y; are simulated as
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Fig. 1. Plots of the simulated data with various degrees of overlap and the corresponding
fitted logistic curves. The dashed horizontal line is p

follows: All Y values corresponding to X values smaller than 10 are set equal to
zero and the remaining are set equal to one. The proportion of one’s is 28/50. In
this data set there is complete separation of the Y values along the x-axis and thus
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Fig. 2. Binary regression quan-
tile plots for the simulated data
with various degrees of overlap.
The legend indicates the number
of overlapping points. The

dashed horizontal line is p

02 04 06 08 1.0



10 E. Bura, J. L. GASTWIRTH: Binary Regression Quantile Plot

the logistic model cannot be fitted to these data. Therefore, the following four
cases will be considered: In Overlap I one Y value is switched to create a mini-
mum overlap, in Overlap 5 five Y values are switched, in Overlap 13 thirteen ¥
values are switched, and in Overlap 22 twenty two Y values are switched. The
situation is illustrated in Figure 1 where the fitted logistic curves are also plotted.
Obviously, the fit of the logistic model deteriorates as the overlap increases. The
lower right plot exhibits the case where the overlap is almost random across x and
the fitted logistic curve is collapsing to the p dashed horizontal line.

Figure 2 contains the corresponding Total Gain binary regression quantile plots.
It is clear that they are ordered with the best corresponding to minimum overlap
and the worst corresponding to almost random overlap. The sample based 7G and
TG4 scores are as follows: 0.476 and 0.959 for Overlap 1, 0.423 and 0.847 for
Overlap 5, 0.263 and 0.527 for Overlap 13, and 0.093 and 0.187 for Overlap 22.
The formulae for computing the sample estimates of TG and TGy can be found
in Sections 2.3 and 2.4, respectively.

2.3 Computation of Total Gain (TG)

Suppose a sample of size n from (Y, X) has been collected. We assume that f > 0
because one can consider either the 0’s or 1’s as the positive response. The c.d.f,,
F(x), of X is continuous and will be estimated by the empirical distribution
Junction F,. Since p(x) is a bounded, continuous real function (see BILLINGSLEY,

1986, Theorem 25.8, p. 344),
J p(x) dFy(x) = [ p(x) dF(x).
Consequently, from (3), TG can be consistently estimated by

TG =2 { ) jx pdF,(x) — fx p(x) dF,,(x)}

-0
1
=2 PFa(x*) —— > p(x) ¢ - (6)
n x;gx*
Let
__ #of events ,; Yi (7)
P= g ofmals  n

Also, let & and B denote the maximum likelihood estimates of the parameters o
and B, and let p(x) = G(G + Px). By plugging in p, &, and B in (1), the Total
Gain for the fitted model p(x) is given by

245+ SIS -1 5 p)

i x<x



Biometrical Journal 43 (2001) 1 11

The point x* is easily computed from the equation p = p(x) where the unknown
parameters are replaced by estimates for the specific model of p(x). For example,
if G is the logistic c.d.f., then

_ exp(a+ Bx)
p(x)_1+exp(a+[3x) ' ®)

When B =0, p(x) =p=Pr (Y =1), regardless of the value of X. Setting
p = p(x) yields x* = [log (p/(1 — p)) — a]/P. Therefore, x* can be estimated by

o= (g 2= -a) /3 ©)

which in tumn yields the following formula for computing 7G,

G =2 pimx,s)c*)—; S p) b (10)

n
x,<x*

Furthermore, in the logistic regression framework, i* has an asymptotic normal
distribution as stated in the following lemma. The proof is given in the Appendix.

Lemma 1: Suppose (y1,x1), (32,%2), ..., (¥n,%:) is a random sample from a
binary random variable Y and a continuous random variable X. Also, suppose that
the loglsnc regression model (8) is fitted to the data.

Let G and P be the maximum likelihood estimates of o and {3, respectively. Let
x* be defined by (9). Then, conditionally on x;,x2, . . . , Xu,

Vi (#% —xx) == N(0,0%), an
where
0s = 1 !
B (T pig) (T xpias) — (3 xipuas)”
ny_ pigi 2 2 M
{<Z pi(n—>_ pi) 1) 2. Xipigi + (ZP:(” — ZP:) > > Pigi

(fp—g—%_p”) ) (i) E""”"‘ﬂ}

with p; = p(x;), i = 1 — p:.

2.4 Properties of TG

TG is a non-negative, unitless measure of the total cumulative distance between
the mean, p, of Y and the response curve p(x). When, Y and X are independent,
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as exhibited in Figure 1 (iii), p(x) is constant and therefore it coincides with p. In
this case, TG is readily seen to be zero from (7). When there is clear separation of
the two Y values along the x-axis; that is, when there is a straightforward relation-
ship between X and Pr (Y = 1|X), we are led to set

) 0 for x<ux*
X)) =
p 1 for x> x*

if the values are distributed as in Figure 1 (i). Otherwise, p(x) is defined analo-
gously. The step function p(x) fits the Y values perfectly and yields the maximum
value of TG, which by (3) is:

TG = pF(x*) + (1 — p) (1 — F(x*)).

Recall that pF(x*) = (1 — p)(1 — F(x*)) from (5), yielding F(x*) = 1 — p. Con-
sequently the maximum value of 7G is

TGpax =2P(1 "‘P)- (12)

Clearly, (26) is maximized at p = 1/2, so that 0 <TG < 2p(1 —p) < 1 /2, with
the two endpoints corresponding to total independence (0) of ¥ and X and to
perfect relationship (%) between Y and X, respectively. Values of TG close to 0
signify poor explanatory power, and TG values close to the upper bound signify
better explanatory power. In practice, one estimates p by 5, so TG-values close to
2p(1 — p) would indicate a near perfect explanatory power of the fitted model.

The sample based estimate of TGy defined by (8) is given by
L . (13)
2p(1 - p)
This estimated standardized version of TG can be viewed as an analog to the
coefficient of determination, R?, in linear regression when the latter is used as a
measure of predictive power or “explained risk” (KORN and SmMoN, 1991), and
not as a measure of goodness of fit, for the following reasons (see MITTLBGCK and
SCHEMPER, 1996): (i) it has an intuitively clear interpretation; (i) linear transforma-
tions of the explanatory variables do not affect TGy, non-linear monotonic trans-
formations do; (iii) 0 < TGgq < 1 from (13), with the two endpoints correspond-
ing to complete lack of predictability and perfect predictability, respectively; and
(iv) even though the values of R? and TGy are not identical for data sets that can
be analyzed by a linear model, they both follow the same trend.

In Section 2.3, TG was shown to be a consistent estimate of 7G. The large
sample distribution of TG, used to compute approximate confidence intervals, is
given by the following:

Theorem 1: Let TG be defined by (10). When the density function f(x) of
F(x) is strictly positive at x* and F'(x) is bounded in a neighborhood of x*, then

\/’; (f5 - TG) ﬁN(O’ O%G) ’ (14)

7/;(Est:d =
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where
[ P )
o1 =4 | Fap(1=p) +P*Fs(1 = F,) + Fip(1 - p) + =>—
x* 2
(_f p(x) dF (x)) o*
- ) [ pare)
with F,, = fx dF(x)and p. =E(Y | X < x¥) = fx p(x) dF (x)/F .

—0o0

The proo}oios given in the Appendix.

2.5 The binary regression quantile plot for the multiple regressor case

So far we have restricted our attention to binary regressions with one independent
variable X. For multiple regressors one can consider the fitted “‘best” predictor of
E(Y | X), say B” X, as a new single regressor. Consequently, the plot can be drawn as
in the univariate case, with the percentile scores of BTX placed on the x-axis.

In practice, for the computation of the binary regression quantile plot one fits
the logistic model

T
p(x) = exp (o + B x) (15)
1+exp (a+p7x)
Q]
@
o
@
Q
]
S
by
(=]
Dl
© Fig. 3. Binary regression quan-
tile plot of the logistic regres-
sion of menarche on age. The
3 dashed horizontal line is 5

0.0 02 0.4 06 08 1.0
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to the data and then uses ﬁTx as a single predictor variable. The method applies to
other link functions as well.

3. Examples

The first data set to be analysed is the Age of menarche of 3918 Polish girls
data (MILICER and SZCZOTKA, 1966). These data were analysed by FINNEY (1971),
MORGAN (1992) and SPRENT (1998). The age of the girls at the onset of menstrua-
tion is the only regressor variable.

Figure 3 contains the binary regression quantile plot exhibiting the Total Gain
for the logistic regression of menarche on age. As expected, it is evident that age
is a significant variable for modelling the probability of having reached menarche.
The numerical value of TG is 0.397, and the estimate of its maximum is
25(1 — p) = 0.484. Therefore, TGyq = 0.82.

The Kyphosis in laminectomy patients data set, taken from HASTIE and TIBSHI-
RANI (1990, pp. 301-303), are retrospective measurements on 81 patients on four
variables. The variable of interest is the presence (1) or absence (0) of kyphosis, a
spinal deformity. The predictors are age in months at time of operation, the start-
ing and ending range of vertebrae levels involved in the operation, indicated by
start and end, and the number of levels involved. The regressors start and number
satisfy number = end — start + 1. The analysis concentrates on identifying risk
factors for the binary response variable kyphosis.

Figure 4 contains four plots. In all four graphs, the solid curve corresponds to
the binary regression quantile plot from the regression of kyphosis on the three
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regressors, start, number, and age. The dashed lines correspond to the regressions
of kyphosis on all but one of the regressor variables, except for the lower right
plot in which the dashed line corresponds to the percentile curve for the model
with age® in addition to the other three regressors, start, number and age. For
example, in the upper left plot of the figure, the dashed line represents the percen-
tile curve of the logistic regression of kyphosis on number and age. The percentile
scores of p7x are placed on the horizontal axis, where B is obtained as explamed
in Section 3. 1 5. That is, for the model with x = (start, number, age) ,
B = (B,,B, Bs)" = (=0.207,0.011,0.411)". The values are the maximum likeli-
hood estimates of the parameters of the logistic regression model. The S — PLUS
statistical package was used for all computations.

The plots indicate that the factor affecting the fit of the model the most is start,
as its exclusion from the full model reduces the area between the p line and the
percentile curve noticeably. The variables age and number seem to be almost in-
distinguishable with respect to their importance in the logistic model. This result
is in accordance with the univariate binary regression quantile plots. From Figure 4
and Table 1 it is clear that szart is the regressor variable with the largest explana-
tory power. The second in importance appears to be number. Of course, part of its
effect cannot be distinguished from start as they are linearly related. The variable
age, on the other hand, is not judged to be important when it enters the logistic
model linearly. Nevertheless, it seems to have a quadratic effect on the logit of
kyphosis, as exhibited in the lower right plot in Figure 4.

The above assessments for the modelling worth of the individual regressors
drawn from the binary regression quantile plots of Figure 31 are in agreement
with the standard deviance analysis (COLLETT, 1991, Sec. 3.9) of the correspond-
ing models. Table 1 contains a list of all the fitted models, the corresponding
estimated_Total Gain (TG) scores, as well as the standardized Total Gain,
TGstd =Tl G/ 2p(1 — p), the residual deviance and the residual degrees of freedom.

4. Discussion

This paper introduces the Total Gain (TG) measure to assess the explanatory
power of a binary regression model. The Total Gain lies between 0 and 0.5 and
its standardized form is between O and 1; the standardized version can be consid-
ered as an analog of R? in linear regression. In effect, in the simple linear regres-
sion context, TG is a multiple of the slope estimate.

In conjunction with the binary regression quantile plot, TG provides a visual
tool to judge the explanatory power of a nested logistic or other link regression
models. Moreover, the importance of the individual regressors can be graphically
assessed and compared to that of the remaining regressors.

Although our examples had moderate values of p, the TG measure also applies
in cases where there is a strong relationship between response and regressors, €.g.
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Table 1

Analysis of the kyphosis data.

Model G T/(\;s,d Deviance df
start + number + age + age? 0.194 0.585 54428 176
start + number + age 0.171 0.514 61.380 77
start + age + age? 0.166 0511 58415 77
number + age + age® 0.148 0.456 63.863 79
start + number 0.160 0.483 64537 78
start 4 age 0.156 0471 65299 78
number + age 0.118 0.357 71.627 78
age + age* 0.119 0365 72739 78
start 0.147 0444 68.072 79
number 0.110 0.332 73357 79
age 0.045 0.135 81933 79

the relationship of maternal age to birth defects (Hook, 1981), which starts at a
very low probability (1 in 500) and rises to a small one (1 in 20).
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Appendix

Proof of Lemma 1: For a generalised linear model with canonical link; that is,
n g(u)—x’ﬁ where X' = (x1,x2,...,x%), B=(a,By,...,B), we have that

Z yi = Z i; (see McCuULLAGH and NELDER, 1989) or, equivalently, p = -’;- Z pi.
i=1
Spec1ﬁca11y, in a one variable logistic regression context, p, is given by plug-

ging in x;, & and f for x, o and P in (8), respectively. By (9), £* can be expressed
as a function of & and B, via p(x), as follows,

£ = {log (3 p(x:)/(n — 3 p(x:))) — &}/B.

Now, the estimates & and [3 have a joint asymptotic normal dlstnbutlon (eg see
AGRESTI, 1990) with asymptotic covariance matrix (X'WX)™!, where
W = diag (p;(1 — p;)) and the design matrix X contains a column of ones.

From (9) we see that £* is a smooth function of @, [3 By a straightforward
application of the delta method we obtain that /n (£* — x*) = AN(0, 02) where
02 is given in the statement of Lemma 1.
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Proof of Theorem 1: Relcall from (10) that TG is twice the difference of the
two statistics, pF,(£*) and — Y p(x;). By (7) and the central limit theorem we
have N x<ex

P(II;”P) o (16)

p=p+

where €; is a standard normal random variable. Also, F,(%*) is the empirical c.d.f.
of X at #*. Therefore,

. 1 2 . 1 &
Fo(x%) = — S I(x < &%) = Fo(x™) +71— S Di(x; € S)
i=1 i=1
where S = [min (£%, x*), max (#*, x*)], and D; = 1 when £* < x*, D; = —1 when

# > x*. BaAHADUR (1966) showed that in an interval I, = (x* — an, x* + a,)
about any point x*, where a, = (log n)/n!/?, the empirical c.d.f. satisfies

Fu(x) = Fy(x™) + F(x) — F(x™) + op(n"/z) (17)

uniformly in I,. As |[£* —x*| is 0,(n~!/2) with probability arbitrarily close to 1,
#* €I, for large n. Letting £* be x in (17) and using the first order Taylor expan-
sion for F(#*) — F(x™) yields

Fo(#) = Fu(x*) +£(x*) A+ 0p(n”1/?) (18)

where A = £* — x*. Similar uses of this representation appear in GASTWIRTH

(1971) and GHOSsH (1971).
From (16) and (18) it follows that

p(1—p)

PFu(#*) = PFa(x™) + pf (") A+ (") Ay [=—e
=
+ R P2 g0, (n1) (19)
Again from the central limit theorem we have that F,,(x") = F, + — &

where F,, = F(x*) and ¢, is a standard normal random variable.
Substitution in (19) yields

F.(1—-F,)
BFa(i*) = pFs +p \|———€2 +pf(x") A

r1(0) a ey, PP




18 E. BUra, J. L. GASTWIRTH: Binary Regression Quantile Plot

By Lemma 1, y/n (£* — x*) has an asymptotic normal distribution with mean zero
and variance 0%. Thus,

. 1- [Fa(l = Fy)
pF,,(x*):pF*+pf(x*)A+F* al " p)€1+P _in**_€2+0p(n~1/2)

(20)
with
> 0i - ) > (- Fy)
€ =’—=’11p(1—__;7~AN(0,1), €2=\/'_:—1;*(1:_FJNAN(OJ)
(21)

where I ’~"= I(x; < x¥). The second term of TG is

— 2 bx) ='_ Z p(x) +_ > Blm).

x,<x x,<x n yes

Recall that p(x;) = exp (6 + Bx:)/(1+exp (& + fx;)), and that (6,f) have a
Vn-asymptotic distribution (AGREsTI, 1990). Hence, p(x;) = p(x;) +a1i(6. — a)

+ ax(B — B) + 0,(n'/2), with ay; = ng) and ay; = 8@—53) . Furthermore,

é}s Pxi) = px+) nf (x*) A + Op(nl/z) -

Combining terms yields

—_ Z pxl =% ; ()C,)+ d )_:l— Z all+(B B Z az;

xi<E¥ Xi<xy xi<x¥

+p(*) F*) A+ (6 — @) ar o f(x*) A
+ (B — B) aza f(x*) A + 0,(n"1/?)

where a4, a4« are a; and a; evaluated at x™* . Neglecting terms of lower order
than n~!/2 and using p(x*) = p yields

T/<\;g2{19F>.<+F,,<\/p—qn;p2 \/F*(l— z—— Z p(x:) + op(n ‘/2)}

To compute the asymptotic distribution of 7G we need to calculate the covariance
of €, and €;. Using (21), it follows that Cov (€;,€;) = E (€;€3) with

E (X Iiw) = Fynp —npFy+npFy  E(T1*w) — npF,

Vp(T=p) \[iFu(1=Fy)  /ap(1=p) \/nF (1 - Fy)

E (6162) =
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Let p. = E(I?‘y,-). Thus, p.= [ p(x) dF(x)/ f dF(x). But Iy = Sy

o0 —o i=1 i=1

where N* equals the number of x;’s that are smaller than or equal to x*. There-
fore, E(3 I1y;) = nF4p. by FELLER (1966, p. 167), which in turn implies that

E(€€)= nF*(pc"P)
S T —p) (JnFs(1—Fy)

n

1 1
Furthermore, — 5 p(x;) = ~ S Ifp(x;). Again by FELLER (1966),

x<x*® i=1
1 [p)aF@)
E|— gj* p(xz)) =F, Lx;—— = J p(x) dF (x)
= [ dF(x) =
with variance
x* 2
1 1 (_f P dF(x))
Var (’;; < x*p(x;)) ) nF,Var (Iip(x)) + = ) nFy(l —Fy)l .

2

As Var (Iip(x;)) = | p*(x) dF(x)/Fy = ( I p(x) dF(x)/F*> ;

¥ i 2
Var (i ) p(x,->) =23 | Pware - | | peoare

Moreover,

Cov (711— él?p(x,-),ez) = n\/;z—F?(lT——F*—) {E(l:il Iip(x;) (I* — F*)>

I r——

i



20 E. BURra, J. L. GASTWIRTH: Binary Regression Quantile Plot

Since x; || x; for i # j, the covariance equals

(1= [ P2t/ FET =Py

Now, TG can be written as TG — 2 PFy«— [ p(x)dF(x) ) =€, where

-0

e L N(0,02), with

F*(l _F*) 1
? +— Fap(pc ~ p)

1 -
=4y Pl=p

* ok 2
[ P*(x) dF(x) _f p(x) dF (x)
+ n Fs B F3
42 Fy(1-F,) 1 1—F 3 dF
P e 1 *>_L p(x) dF(x)

Note that,

x¥

2pFy — _f p(x) dF (x) = 2_f (p —p(x)) dF (x) = TG

by (3). Also, let 6%; = no?. After simplifying the formula for 0?2, we obtain Theo-
rem 1.
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Book Review

JEAN-PAUL CHILES and PIERRE DELFINGER: Geostatistics. Modeling Spatial Uncertainity. J. Wiley &
Sons, New York, ISBN 0-471-08315-1, 1999, 695 pp., £ 80.95.

Geostatistics is a central part of spatial statistics with many applications also in fields outside of the
geosciences, for example in biology and ecology. It studies phenomena that are correlated in space and
time, by means of the theory of regionalised variables. This field is in very active development, which
is indicated not only by many interesting applications but also by the fact that various books of differ-
ent levels have recently been published in the area.

In this context the book by Chilés and Delfiner plays a prominent role. The reviewer predicts that it
will soon become the handbook of the field. The community of spatial statisticians will be grateful to
the authors for producing such a great and carefully written work.

Here is a list of the chapter headings, which shows the modern content and exposition:

. Preliminaries (18 pages);

. Structural analysis (which means variography; 121 pages);

. Kriging (81 pages);

. Intrinsic model of order k (61 pages);

. Multivariate methods (83 pages);

. Nonlinear methods (74 pages);

. Conditional simulations (144 pages);

. Scale effects and inverse problems (43 pages).

The authors come from the famous school of Georges Matheron at the Center for Geostatistics in
Fontainebleau. Consequently, the book has the strengths of that school: very good statistical modeling
and thorough mathematical analysis. Perhaps the statistical methods are not so thoroughly studied; here
the older book by Cressie (1993) may still be superior. For example, little is said on model tests. A
highlight of the book is the detailed description of simulation methods on 144 pages. Very valuable is
also the material on modeling of porous media and determination of permeability in the last two chap-
ters. Much material in the book is so modern that even specialists will make surprising and enlighten-
ing discoveries. Also many side remarks give important information and testify to the authors’ enor-
mous experience. As the reviewer was told, the book contains parts of Matheron’s unpublished work.

It corresponds to the character of a handbook that many ideas are presented in a spirit of peaceful
coexistence. The Matern class of variograms, which is considered by some researchers as so important
and fashionable, is only briefly described on 13 lines, called K-Bessel model, while the spherical
variogram, about which an author such as M. Stein utters that he does not understand why it is so
popular, is called the ‘geostatistician’s best friend’. Also the level of the book is quite variable: there
are pieces of deep and abstract mathematics (including passages which applied workers might consider
as mathematical games) close together with simple examples and elementary facts. With the intention
to introduce ideas from adjacent branches of spatial statistics, there are passages which have the
character of a review paper. By no means this book is an introduction for beginners, since many ideas
are explained only briefly; often the explanations have the character of memoranda for the insider.

This book is an indispensable tool and reference for any one doing applied work in the field of

geostatistics.
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