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SUMMARY

Motivated by a meta-analysis of animal experiments on the effect of dietary fat and total caloric
intake on mammary tumorigenesis, we explore the use of sandwich estimators of variance with
* conditional logistic regression. Classical conditional logistic regression assumes that the parame-
. ters are fixed effects across all clusters, while the sandwich estimator gives appropriate inferences
for either fixed effects or random effects. However, inference using the standard Wald test with
“the sandwich estimator requires that each parameter is estimated using information from a large
- number of clusters. Since our example violates this condition, we introduce two modifications to
the standard Wald tfest. First, we reduce the bias of the empirical variance estimator (the middle
" of the sandwich) by using standardized residuals. Second, we approximately account for the vari-
--ance of these estimators by using the ¢{-distribution instead of the normal distribution, where the
“degrees of freedom are estimated using Satterthwaite’s approximation. Through simulations, we -
. show that these sandwich estimators perform almost as well as classical estimators when the true
effects are fixed and much better than the classical estimators when the true effects are random.
We achieve simulated nominal coverage for these sandwich estimators even when some parameters
. are estimated from a small number of clusters.

1. Introduction

'In ‘this paper, we discuss a meta-analysis of animal experiments on dietary fat, calorie intake,
and mammary tumors. We analyze these data using conditional logistic regression with sandwich
(robust) variance estimators for clustered data. Although both conditional logistic regression and
sandwich estimators are well known in the literature, we know of no detailed study of their combined
“‘use. We address small sample issues by using standardized residuals to estimate the middle of the
" sandwich estimator and using a t-distribution for the resulting Wald test with degrees of freedom
estimated by Satterthwaite’s approximation. We show through simulation and our meta-analysis
that this combination of methods is useful in a practical situation.

In this paper, we re-examine the analyses of Table 5 in Freedman, Clifford, and Messina (1990)
that model the effect of dietary fat and total caloric intake on mammary tumor incidence for two
data sets, 43 experiments on Sprague-Dawley rats fed corn oil, and 17 experiments on mice breed
for spontaneous tumors. Separate analyses were performed on the two data sets because the total
caloric intake, and hence fat calorie intake, varies considerably between the species. Each experiment
- comprises two or more groups of animals receiving essentially the same treatment except for diets,

%C’O'r'responding author’s email address: mTf@helix.nih.gov

Key words: Generalized estimating equations; Random effects; Robust variance; Satterthwaite’s
formula; Standardized residuals.
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which differ in the amount of fat and/or total calories fed to the animals. The primary response
variable is the number of animals developing a mammary tumor in each group.

As an example, consider three experiments on Sprague-Dawley rats reported by Carroll and
Khor (1970). For each experiment (or set in the terminology of Freedman et al., 1990), Carroll
and Khor divided about 60 rats into 2 equal groups, a low-fat group that was fed 0.5% corn oil
by weight and a high-fat group that was fed 20% corn oil by weight. At 50 days of age, all rats
were given a single dose of a carcinogen, 7,12-dimethylbenz(a)anthracene (DMBA). From day 48
to 51 of age, all rats were fed a standard commercial diet to minimize the effect of the experimental
diets on the absorption of the DMBA. The three experiments were identical except for the doses
of DMBA, which were 1 mg, 2.5 mg, and 5 mg, and the follow-up times, which were 4 months
after DMBA administration for the experiments with doses of 2.5 mg and 5 mg and 6 months after
DMBA for the experiment with a dose of 1 mg. The experiment with a smaller dose was followed
longer because the tumor incidence was smalfer. In Carroll and Khor's (1970) experiments, the
total caloric intake was not regulated or reported. Since most rats will self-regulate their intake to
eat a constant amount of calories regardless of the fat content of the diet, we assumed the total
caloric intake was constant within each of these three experiments.

Other experiments on the Sprague-Dawley rats differed in the type of carcinogen or dose, the
amount of follow-up time, and the diets given each of the groups. There were typically 20-30 rats
in each group and 2-4 groups per experiment. There was a total of 104 groups altogether for the 43
experiments on the Sprague-Dawley rats. Of these 43 experiments, 7 approximately fixed the total
number of calories, 1 approximately fixed the fat calories, 3 varied both values, and 32 varied the
fat calories but did not report the total caloric intake. For these latter experiments, we assumed
the total caloric intake was constant within each experiment, as we did with the data from Carroll
and Khor (1970). More details on the mice experiments are given in Section 4.

Freedman et al. (1990) assumed for both data sets that the data come from an unconditional
logistic model

logit(p;;) = o; + zéjﬂ, ‘ ‘ (1)

where p;; is the expected proportion of responses (e.g., animals with tumors) in the jth group
of the ith experiment, z; i% the p x 1 vector of corresponding covariates, c; is the intercept
parameter for the ith experiment, and 8 is the fixed diet parameter vector. The intercept terms
are fixed nuisance parameters. For Freedman et al. (1990), z;; consists of two terms, (TCAL);;,
the average total calories consumed per animal per day, and (FC’AL)m, the average total calories
of fat consumed per animal per day for the jth group of the ith experiment. For those experiments
with unrecorded total caloric intake, Freedman et al. (1990) imputed the average value for the
species. For the Sprague-Dawley rats fed corn oil, the value of the imputed total calories does
not affect the analysis. In fact, if for each of the experiments with unrecorded total calories the
total calories were known and constant within the experiment, we would obtain the same results
because the constant value will be absorbed into. the intercept parameter. Although there is a
nuisance parameter corresponding to each cluster (i.e., experiment), the analysis is asymptotically
correct as the expected number of responses per group goes to infinity. Since there are 20-30 animals
per group, Freedman et al.’s analysis is reasonable in this respect. . .

We wish to improve on Freedman et al.’s analysis by allowing heterogeneity of the diet effects, £.
Keep in mind two aspects of the data that are important in motivating Freedman et al.’s analysis.
First, the between-experiment variability is large; although within an experiment the animals are
treated the same with respect to initiation of the tumors (e.g., given the same type and dose of
carcinogen) and are followed for the same length of time, these and other factors vary considerably
between experiments. This is why Freedman et al. (1990) modeled an intercept term for each
experiment. Second, there are two primary effects to be estimated, the effect of dietary fat and
of total calorie intake. Because of the way the experiments are designed, both effects cannot be
estimated for each experiment. The primary effects within an experiment can be estimated only
in experiments where both fat calories and total calories vary and, even then, more than two
groups are required (see Freedman, 1994). This second reason is why we cannot use a traditional
mixed-effects model.

Consider a traditional mixed-effects model, which is fixed in the intercept parameters but random
in the diet parameters,

logit(pi;) = ai + 215 (B + bi), 2
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here b; are p x 1 random effects vectors identically distributed from a distribution with mean
gero. Traditional estimation methods for estimating the random effects may not be applied (see
,‘;«Laird and Ware, 1982; Stiratelli, Laird, and Ware, 1984; DerSimonian and Laird, 1986) because,
_as explained above, it is not possible to estimate the random effects parameters b; from each
' xperiment. Of course, even without estimating the b;, we can still obtain an estimate for 8 by using
numerical methods to integrate the likelihood over the random effects distribution (see MecChulloch,
©1097). However, a problem with applying this model is the dependence of the results on a random
- effects distribution that is unknown. Nonparametric versions of random-effects models that do not
' require the specification of the random-effects distribution (see Butler and Louis, 1992) also require
estimation of the primary effects from each experiment and cannot be applied to our data.
i A second way to model heterogeneity in the diet parameters is through a marginal model. A
marginal model does not explicitly parameterize the heterogeneity of the diet parameters but
: properly accounts for this heterogeneity through the use of the sandwich estimator of variance.
- The sandwich estimator requires a fixed number of parameters and a large number of clusters (see
© White, 1082; Binder, 1983; Royall, 1986; Zeger and Liang, 1986). Thus, a traditional marginal model
applied to our data would have all parameters common to each experiment even the intercepts,

- logit(pi) =+ 235 8%. (3)
This model may be impractical for our data because of the large between-experiment variability
mentioned above,

These two traditional ways of modeling heterogeneity of parameters are compared in Zeger,
Liang, and Albert (1988). They call the mixed-effects model a subject-specific model and the

marginal model a population-averaged model. They consider a simpler mixed-effects model than
equation (2), where the number of fixed-effects does not increase with the number of clusters, e.g.,

logit(pi;) = o + 215(8 + bs). : 4)

They show that, even though the expected value of b; is zero for all i, the sub ject-specific parameter
B in the mixed-effects model [equation (4)] does not estimate the same effect as the population-
averaged parameter 8 in the marginal model [equation (3)]: Although these effects are different,
Zeger et al. (1988) show that tests on both models applied to the same data give similar significance
values. ’

In this paper, we allow for heterogeneity in the true effects for both the intercept terms and the
diet parameters. So, for example, the true data could come from a process described by equation
(2). Our model starts with the model of Freedman et al. (1990) [equation (1)] and accounts for
“the heterogeneity in the intercept parameters by conditioning out these paramieters and for the
heterogeneity in the diet parameters by using the sandwich estimator of variance. We study a
correction for degrees of freedom in the middle part of the sandwich estimator using standardization
of the residuals and Satterthwaite’s approximation. This correction may be important since the -
total caloric intake effect is estimated from the small percentage of the experiments that varied
total calories among groups. An added benefit of using & conditional model (not needed for our
meta-analysis) is that we no longer require the assumption of a large number of animals within
each experimental group, as with the unconditional model. ’

In Section 2, we introduce the sandwich estimator for conditional logistic regression using the
standardized residuals. We créate an approximate Wald test using the t-distribution and estimating
the degrees of freedom with Satterthwaite’s approximation. (A PC executable program to. perform
analyses of this type is available at http://dcp.ncinih.gov/ BB/software.html.) In Section 3, we
present simulations to examine the performance of the conditional logistic regression with the
~ sandwich estimator of variance when the true model is a random effects one. Finally, in Section 4;
3 we reanalyze the data from Freedman et al. (1990) using these methods. -

2. The Model

2.1 Conditional Logistic Regression with Sandwich Estimator of Variance

Sandwich estimators of variance are important because they are consistent whén the model for
the mean is correctly specified (Liang and Zeger, 1986). For example, if there is overdispersion
present, then the variance estimator is still consistent. In fact, even if the mean is misspecified, the
sandwich estimator of the variance consistently estimates the variance of the misspecified model
(see White, 1982). In this section, we apply the sandwich estimator of the variance to conditional

logistic regression.
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Let Y;; and m;; represent the number of positive responses (i.e., animals with tumors) and
the number of possible responses (i.e., animals), respectively, for the jth group in the ith cluster
(i.e., experiment). Letting p;; = E(Y;) /mU, the unconditional logistic model is given in equation
(1). Since the vector m; = [m;1 - - Myy,] is fixed, the sufficient statistic for oz is a; = ™ i1 Yigs
the number of positive responses in the ith cluster. Thus, we condition on the a; to obtain the
conditional likelihood that does not depend on the o; (see the Appendix). Within the ith cluster,
the sufficient statistic for 3 is the p x 1 vector t; = &7 =1 ZigYig We review in the Appendix that
the score statistic for 8 for the conditional logistic regressmn may be written as

U(g) = Z It~ 51 ),

i=1

where E(Z; | ) is defined explicitly in the Appéndix. We solve for 3 using a Newton-Raphson
algorithm. In the algorithm, if 3 is the current estimate, then the subsequent estimate Bis

ss (VO s
pnp- (B4 )MU@. ®

By using a similar Taylor series expansion but replacing B with £ and by taking the covariance of
both sides, we obtain the sandwich estimator of variance as a function of 3, i.e.,

-1 N =1
couth) (52} eontwioy (252

(Eo) Bl )

ou(B)

o .ZD

and D; is given explicitly in the Appendix. Let D; be D; with 8 replaced- by ﬂ To calculate D;
and B, we use the numerical methods given in Gail, Lubin, and Rubinstein (1981). The classical
variance estimator for conditional lOngth regressmn is cov(ﬂ) = (Z} ¢ 1 D)™, which can be related
to equation (6) by substituting D; for D; and £K | D; for BX cov(t;). The standard sandwich
estimator of variance also uses D; for D; but estimates %X | cov(t;) with a sum of empirical variance
estimators, . '

where

K

> (k-

i=]

B(t:) (t: — B(t),

where E(t;) = E(#; | B). Bach estimator (¢; — B(t;))(t; — B(t;)) is a quite variable estimator of
cov(t;). However, the sum of the estimators is a fairly good estimator of the sum of the covariances
as long as K >» p and none of the elements of 3 is estimated primarily by a small number of clusters
(see Diggle, Liang, and Zeger, 1994, pp. 71-72, for a similar discussion with respect to generalized
least squares estimators). However, this latter situation is not met in our data example. Most of
the experiments in the meta-analysis fix the total number of calories while varying the percentage
of fat in the diet. For these experiments, the element of ¢; corresponding to the total number of
calories will be exactly equal to the corresponding element of E(¢; | ﬁ) regardless of the value of
ﬂ, therefore, the estimator of the corresponding element of the sum of covariances depends only
on those experiments that vary total caloric intake. Thus, even when K > p, the middle of the
sandwich estimator may be quite unstable and have substantial bias.

To correct for these two problems, we perform two modifications to the usual application of
the Wald test associated with a sandwich estimator. These modifications are analogous to the
modifications to the Z-test to obtain the t-test. We first correct the bias of the variance estimator
(or at least partially correct it), then we use the t-distribution instead of the normal distribution
to account for the variability of the variance estimator.
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2 Bias of BEmpirical Variance Estimator

‘gimilar to the way that residuals from a simple linear model or residuals from a nonlinear least
‘squared model (see Carroll and Ruppert, 1988, pp. 32-33) can give biased estimators of variance, we
‘éan show that the empirical variance estimators are biased. First write the t;’s and their estimated
‘expectations as pK x 1 vectors,

t1 E(tl)
. to E(t2)
[ E(t) = : - .
| tk B(tx)

Use a Taylor series expansion abot}f A to approximate E(t), so that
t—-B@) ~t—E@®)+D(B~8),

where D' = [D1 Do Dg). Then we use equation (5) with 3 replaced by B to estimate A in

the above equation, i.e.,

__lK

K
t—E(t) =t —E(t) - D (Z D.i) Z (t; — E(t:))
=1 =1

i

K -1
Ipx —D (Z Di) Ip I - Ip] p {t—E@®)}
=1

cC {t - E(t)} ’

where In, is an 1 x n identity matrix. If the model is correctly specified, then E([t—E®)]t—E(@)]) =
V is a block diagonal matrix with elements D1,..., Dk, and '

E ([t - Bt - Be))) = CVE' =CV.

Note that C is singular. A simple correction would be to multiply each value of (t; — B(t;))(t; —

" B(t;))’ by the reciprocal of the average of the diagonal elements of C so that

pK .pK K

trace(C) pK—-p K1

This correction does not suit our needs because it increases the variance estimators of all clusters

- equally. Recall the problem of only a few clusters estimating one of the parameters (e.g., a few
. experiments estimating the parameter for total calories). Say there were only K™ of those clusters

and K* < K. Ideally, we would like the empirical variance estimators for those clusters to be
inflated by approximately K*/(K* —1). ‘ ' .

A second method to account for bias is to standardize the residuals ¢; — E(ti). We form the
standardized residuals by dividing each element by the square-root of the accompanying diagonal
element of C, using ZA)Z for D;. In other words, the vector of standardized residuals for the ith

cluster is given by

—1/2

(t: — B(t:)) , M

K -1
S =diag Ip — D; (Z f)i)

=1

where diag(M) is formed by replacing all off-diagonal elements of M with zeros. There will be'some
numerical problems with taking the square-root inverse of

% -1
diag { I — D; (Z f)i) , (8)
C\i=1
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if some of the diagonal elements equal zero or are very near zero. For example, we would obtain a
diagonal element of zero for the ith experiment if all experiments held one covariate constant (eg.,
total caloric intake) except the ¢th experiment; which holds the other covariates constant. To guard
against this problem, we recommend a modification; if there are diagonal elements of equation (8)
that are less than 0.01 times the maximum diagonal value (for that cluster), set them equal to 0.01
times the maximum diagonal value. We use this modification for all analyses using standardized
residuals in this paper. Our corrected estimator of the cov(t;) is SFS} . '

2.3 Accounting for Variability of Variance Estimator
A Wald test may be performed on each parameter by comparing

T, = S - o

v/ ()

to a standard normal distribution, where Bj is the jth element of 8 and \Ta}(ﬁj) is the (j,7)th
element of the sandwich estimator of the variance using the standardized residuals. This estimator
may perform poorly since the variance of ﬁfr(ﬁj) may be large; therefore, we use a t-distribution
for Tj.

To motivate the t-distribution, consider first the ideal situation where p = 1 and the S; are
independent and distributed normally with mean 0 and variance Vp. Then from equation (6),
we get

cov(B) = (Z Di)_l (KVp) (Z Di)_1

and, under the null hypothesis of 8 = 0, K —1/2 (2D;) Bis approximately normally distributed with
mean 0 and variance Vp, where the unmarked summations are from i = 1 to K. Also, Vo_l LSy 2
is distributed as a chi-squared distribution with K degrees of freedom. If we can assume that
K=Y 2=D)Band © S22 are independent, then under the null hypothesis,

2=k (k2 (L) 8) (Tsisy) (&7 (3o D) B) = F(cv(py 8
is distributed as an F-distribution with 1 and K degrees of freedom or T is distributed as a
t-distribution with K degrees of freedom.

Now we relax this ideal situation slightly by allowing the variance to change between clusters,
ie., 8§ ~ N(0,V;). In this case we estimate the degrees of freedom by Satterthwaite’s formula,
which models the distribution of f/o_l 572 with the x? distribution with the best fit of moments
(see Cochran, 1977). To obtain Satterthwaite’s formula, we first assume that there exist constants

Vo and d such that
1 *2 2
V_o E 8%~ xg

If the V; are known, using the fact that S} /V; ~ X%) we solve for the constants By equating the first
two moments of VO_1 ¥ 87?2 to those of a chi-squared random variable with d degrees of freedom.
Thus, VQ =d TV, and

Zw?
Nz

The value d must be estimated from the data. Satterthwaite’s formula applied to our problem
estimates d with

d

2
K
(Zas0?)
——
2= (87)*
This estimator of degrees of freedom is in general biased downward, leading to a conservative test

when the normality assumptions hold. We make no correction for this bias because the distribution
of the residuals may be far from normal. '
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" Finally, consider the case where p > 1. The Wald test of equation (9) tests one element at
time. We form our approximate t tests in this same manner, estimating a separate degree of
eedom for testing each element of 3. We assume that T; of equation (9) is distributed according
o a t-distribution with degrees of freedom -

(ZEusy?)

P TR e
PIANCAR
here S;; is the jth element of Sy.
We have only discussed testing for §; = 0 versus §; # 0. We can test any linear hypothesis by
using linear combinations of the covariates. For example, suppose we wish to test

_,_ |0
Hp: LB =0= [02]

. —_— — 01
HlLﬂ:@— !:92:|,

“where L is full rank f1is 7 x 1 and 8 is (p — ) x 1. To perform this test, we rewrite z” B as
(zz i “WYLp) = 25 0 then proceed as with the usual test, replacing z ;i for z;;.

3. Simulation

‘Because the sandwich estimators have good properties only asymptotically and the use of

standardized residuals with the t-distribution for the Wald test relies on approximations, we ran
several simulations. The simulations model a simplified version of the meta-analysis mentioned in
the Introduction. We let the true process that generates the data be a random-effects model. We

-gompare the classical conditional logistic regression to the one that uses the sandwich estimator of

variance with the standardized residuals and the ¢-distribution for the Wald test as described in

‘the previous section. Both methods estimate a populetion—averaged parameter 8% with the same

estimator. The difference between the methods is the variance estimators and the coverage,

Altogether, we performed 24 sets ‘of simulations. Each set consists of 1000 simulations. The 24
sets of simulations were done by taking all combinations of 6 different cases (Cases 1-6) defining the
random and fixed effects of the true treatment parameters and 4 designs (Designs A-D) defining
4 different designs of the meta-analysis. We first discuss the general form of the simulations that
hold for all designs and cases. We have K clusters (i.e., experiments) with 2 groups in each cluster,
every group having m;; = m = 30 Bernoulli responses (i.e., animals). The true probability of a
response for each group is given by the logistic model '

logit (pi;) = s + 2§ (B + b;) = o + 2551 (B1 + bi1) + 252 (B2 + biz) - (109

where @; are the intercepts that come from a normal distribution with mean « and variance o2,

= [bs1 bip] is the vector of random effects that comes from a normal distribution with mean and
correlatlon 2610 and variances o7 and o3, 3’ = [B1 B2] is the vector of subject-specific treatment
effects, and zU [2:51 2ij2] is the vector of the two covariates (i.e., dietary fat and total calories).
As throughout the paper, the index i represents clusters and j represents groups within a cluster.
We can make any of the parameters constant across clusters by setting its variance equal to zero.
For Designs A, B, and C, we have four different types of clusters with equal numbers of each
type. Between these three designs, we change the total number of clusters (Design A: K =20,
Design B: K = 40, Design C: K = 80.) The designs are listed in Table 1. In Design D, for 37 out

Table 1
Designs A? B, and C
Group 1 Group 2
Clusters 2311 2312 Zi21 Z;99
(K/4) 0.5 0.0 0.5 1.0
(K/4) 0.0 0.5 1.0 0.5
(K/4) 0.0 0.0 1.0 1.0
(K/4) 0.0 1.0 1.0 0.0
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Table 2
Design D

Clusters

Group 1

%11

Group 2

2321

37 0.50 0.0 0.50 1.0 Case Si

1 0.25 0.5 0.75 0.5 ' —

1 0.25 0.0 0.75 1.0 1 A/ 00

1 0.25 ‘1.0 0.75 0.0 P2 0.0

7 2 B 00

: B2 0.0

of 40 of the clusters, we have z;1 = z91, ke., the factor is constant between the two groups 3 P 00

within these clusters. Thus, only three of the clusters estimate the parameter for 37. The details B2 0.0

of Design D are listed in Table 2. 4 B 0.1

For each of the cases, we test different true values for the subject-specific parameters. These B2 0.1

va,lues are listed in Table 3. For all cases, we have nonconstant effects on the intercept, where 5 B 01

02 = 1. The values of o are chosen to avoid probabilities of response within any group that are B2 0.1

very close to 0 or 1. The treatment (e.g., fat calories and total calories) effects are varied between 6 B1 0.2

cases. All cases may be described in terms of fixed treatment effects versus random treatment Bz 0.2
effects and null hypotheses (i.e., 8 = 0) versus alternative hypotheses (i.e., 8 # 0). The values for
the parameters are of the same order as the effects from the 104 groups of Sprague-Dawley rats

from 43 clusters mentioned in the Introduction (although the designs are greatly simplified). 1. The simyla
The expected value of our population-averaged estimator 8* is not equal to the subject-specific

2. The classicy
logistic regy
3., The sandwi
estimates u
4, The sandw

estimates u

parameter 3 (see Zeger et al., 1988). The population-averaged interpretation is the one applicable
to our meta-analysis because we are not interested in each subject-specific (i.e., experiment-specific)
effect in the meta-analysis but in the overall population-averaged effect. Unfortunately, we do not
know the value of 8* under the simulation, and no exact closed-form expression of 8% is available.
To estimate 8%, we perform another simulation, letting the number of clusters grow large. Note
that 8" is approximately equal (perhaps exactly equal) to 8 when either a,% =0,k=1,2,0r =0
(see the approximation given in Zeger et al., 1988, p. 1054). So we only, need to simulate Cases 5
and 6. We run four sets of simulations, Cases 5 and 6 at each of two designs, one representing
Designs. A, B, and C and one representing Design D. For each of these four sets of simulations, we
let the number of clusters equal 2000 in the proportions of Tables 1 and 2. We let the number of
simulations for each set be 2000. The mean estimates for ﬁ*' for each of the four sets are

As expected i
specified, the claj
to be close to th{
underestimates {
This underestim§
half the size of {
estimate the vari]
variances, we ses
; Design D since i

Although the
residuals are clog
than the classicd]

estimates for 87
.. standardized res#

correct for this 1

discussed in Sect]
- 'We list the sim§

are given by g

The simulated cq

value. The classid]
The sandwich inf
variance estimat§

Case 5 Cz‘a,se 6

[4.094, 2.363]
[4.152, 2.352)

Designs A, B, and C
Design D

[3.946, 2.298)
[4.032, 2.246].

We use these values to center the confidence intervals to calculate the estimated coverage below.

Before considering the coverage of the simulations, consider first the variance estimators. Table 4
lists the average of the estimates of the variance for Designs A and D. (The results for Designs B
and C are similar to Design A.) We list four different variances:

Table 3
Cases

Treatment

Case effect

Hypothesis o s B o] Be 03

1 Fixed Null ] formula. Recall e |
2 Fixed Alternative  —3.3 1.0 4.2 0.0 2.4 0.0 is 95%, we expec}

3 Random Null 0.0 1.0 0.0 0.5 0.0 0.5 and 0.967. The s§
4 Random Null 0.0 1.0 0.0 1.0 0.0 2.0 effect, but the cod
5 Random Alternative -3.3 1.0 4.2 0.5 24 0.5 when there is a §
6 Random Alternative

. conservative, pary
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e the estimated coverage below.
the variance estimators. Table 4
d D. (The results for Designs B

3 o2 B2 o3
.0 0.0 0.0 0.0
.2 0.0 2.4 0.0
.0 0.5 0.0 0.5
.0 1.0 0.0 2.0
.2 0.5 2.4 0.5

2 1.0 2.4 2.0
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Table 4

Average of the estimates of the variance for the parameters

Design A Design D

Sandwich  Sandwich Sandwich = Sandwich
unstand. stand. unstand. stand.

Sim. Class. resid. resid. Sim. Class. resid. resid.

0.0204 0.0218 0.0190 0.0204 0.4930 0.4518 0.2904 0.4487
B2 0.0226 0.0218  /0.0191 0.0206 0.0081  0.0083 0.0080 0.0082

2 /o 0.0652  0.0703 ’30.0628 0.0691 0.7087 0.6779 0.4235 0.7203
B2 0.0560 0.0554 ' 0.0489 0.0537 0.0130 0.0124 0.0118 0.0121

3 B1 00737 0.0224 /' 0.0648 0.0699 11077  0.4700. . 0.6354 0.9952
B2 0.0752  0.0225 0.0654 0.0706 0.0209 0.0085 0.0196 0.0201

4_  £/ 0.1450 0.0234 0.1234 0.1335 2.2520 0.5176 1.3946 2.2551
0.1517 0.0234 0.1364 0.1476 0.0460 - 0.0089 0.0459 0.0473

5 /1 01428 0.0718 0.1257 0.1405 1.3942 0.7021 0.7168 1.2616
Bz 0.1172  0.0564 0.0979 0.1075 0.0256 0.0126 0.0244 0.0252

6  B 0.2576  0.0730 0.2248 0.2525 3.1164 0.7859 1.4022 2.8291
0.2482 0.0576 0.1913 0.2103 0.0578 0.0128 0.0546 0.0562

1. The simulated variance is the sample variance of the 1000 different parameter estimates.
2. The classical variance is the average of the variances calculated from the standard conditional
. logistic regression model.
3. The sandwich variance with unstandardized residials is the average of the sandwich variance
estimates using I (¢; — B(¢;))(¢; — B(t;))’ for the middle of the sandwich estimator.
4. The sandwich variance with standardized residuals is the average of the sandwich variance
estimates using ¥ 5} S; " for the middle of the sandwich estimator.

As expected in the fixed treatment cases (Cases 1 and2) where the classical variance is correctly
specified, the classical estimate is approximately equal to thie simulated estimate, which we expect
“ ta be close to the true variance, For the random effects models (Cases 3-6), the classical variance
inderestimates the variance of the parameter estimates as measured by the simulated variance.
This underestimation is severe; in most of the random effects cases, the classical variance is under
half the size of the simulated variance. The sandwich estimators with the standardized residuals
estimate the variance well for both the fixed and random effects cases. Comparing the two sandwich
variances, we see the standardization is particularly needed for estimating the variance of 81 in
- Design D since in this design B1 is éstimated from only three clusters.

Although the mean of the variance estimates for the sandwich estimate with standardized
residuals are close to the simulated values, the sample variance of those estimates is much larger
than the classical ones. For example, in Design A, Case 6, the sample variance of the variance
estimates for ,Bf is 0.0004 for the classical variance and 0.0165 for the sandwich estimate with
standardized residuals. Because the variance of the variance estimators is large, it is important to
correct for this by using the t-distribution to calculate the distribution of the Wald statistic as
. discussed in Section 2.3.

We list the simulated coverage of the nominal 95% confidence 1ntervals in Table 5. The true values
are given by A for Cases 1-4 and by the simulated 8* mentioned previously for Cases 5 and 6..
The simulated coverage is the percent of time the calculated confidence interval contained the true
value. The classical intervals are formed from the normal approximation using the classical variance.
" The sandwich intervals are formed using the standardized residuals in the middle of the sandwich

variance estimate and the t-distribution with degrees of freedom estimated by Satterthwaite's

formula. Recall each case~design combination was simulated 1000 times so that, if the true coverage
is 95%, we expect over 99% of Monte Carlo simulations to have simulated coverage between 0.931
and 0.967. The simulated coverage of the classical intervals appears correct when there is a fixed
effect, but the coverage appears to be liberal when there are random effects, with very poor coverage
when there is a large variance on the random effects. In contrast, the sandwich intervals appear
conservative, particularly for designs A and B. ‘
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Table 5
Simulated coverage for 95% confidence intervals (sandwich method
uses standardized residuals and Satterthwaite’s approzimation)

Design A Design B Design C Design D
Case Classical Sandwich Classical Sandwich Classical - Sandwich Classical Sandwich
1 51 0.950 0.971 0.950 0.955 0.947 0.960 0.951 0.951
B2 0.952 0.964 0.953 0.971 0.943 0.951 0.949 0.964

2 B/ 0961 0.985 0.947 0.971 0.952 0.967 0.943 0.953
B2 0953  0.980 0.945 0.961 0.946 0.964 0.942 0.957

3 /o072t 0.972 0.705 0.952 0.745 0.963 0.803 0.949
B2 0.720 0.964 0.744 10.978 0.717 0.952 0.776 0.958

4 B 0561 0.973 0.570 0.970 0.593 0.966 0.639 0.966
B2 0573 0.972 0.541 0.965 0.551 0.970 0.621 0.960

5 B 0.829 0.986 0.832 0.978 0.827 0.970 0.842 0.951
B2 0.819 0.978 0.828 0.963 0.827 0.969 0.835 0.958

6 B 0717 0.986 0.699 0.985 0.687 0.973 0.672 0.965
Bz 0.664 0.977 0.643 0.975 0.685 0.958 0.612 0.963

In summary, when random effects are present in the treatment (i.e., diet) effects, then the
sandwich estimators of variance proposed in this paper perform better than the classical estimator
of variance. The modifications to the standard Wald test with the sandwich estimator appear to
work well. When the treatment effects are constant across all clusters (o2 = 0, a = 1,2), then the

classical conditional model is correctly specified and it performs well. In these cases, the sandwich
estimator of variance does not perform too badly.

4. Example: Meta—Analysis

We now analyze the motivating data mentioned in the Introduction. The results for the Sprague-
Dawley rats are presented in the upper section of Table 6. The unconditional model is the model
reported in Freedman et al. (1990) and described in the Introduction. The conclusion of that model
is that all calories increase the risk of tumorigenesis, with fat calories increasing this risk even more
than other calories. The values are almost identical to the conditional logistic analysis with the
classical error variance. This is as expected since most of the groups have a large number of rats.
The sandwich standard errors calculated using the standardized residuals are quite different. The
standard error for the fat parameter is larger than the classical estimate, while the standard error
for the total calories is smaller than the classical estimate. A possible reason for this low estimate is
the high variability of the.sandwich estimator: The standard errors do not capture all the difference
between the two conditional methods because the clagsical model uses the normal distribution while
the sandwich model uses the t-distribution with the Satterthwaite degrees of freedom. We list the
estimated 95% confidence intervals to capture a fuller picture of the differences between the two

methods: for the classical model, 0.087-< 81 < 0.158 and 0.068 < B2 < 0.091; while for the

sandwich model, 0.109 < $; < 0.136 and 0.059 < g8, < 0.101. Even using the ¢-distribution, the
intervals for 81 (TCAL) are larger for the classical model. Because so few experiments are used to
estimate the TCAL effect and the variance of the sandwich estimates is large, we recommend using
the classical confidence intervals for £.

The second data set comprises mice bred for spontaneous tumors. In this data set, there are
57 groups of animals from 17 experiments. The average number of mice in each group was 38.7.
Thirteen of the 17 experiments varied the total caloric intake (TCAL) between different groups.
In most of the groups, the TCAL was measured, although there were a few in which we imputed
the average of the TCAL for groups fed nonrestricted diets. In one of the experiments, the TCAL
changed between groups but was not measured (White et al., 1944). The experiment reported a
46% calorie restriction in one of the groups but did not list the TCAL for the nonrestricted group.
The results did not change significantly by changing the imputed value. The results are presented in
the lower section of Table 6. Again we see very similar results between the unconditional model and
the conditional one. The standard errors from the sandwich estimates are considerably larger than
those of the conditional model. Again we compare the 95% confidence. intervals: for the classical
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Table 6
Results from meta-analysis

| Statistical Total calories (kcal) Fat calories (kcal)
Data model B1  Std. err. p-value s Std. err. . p-value
ague-Dawley rats  Uncond. 0.125 0.0183 <0.0001 0.081 0.0060 <0.0001
fed corn oil with Class. cond. 0.123 0.0181 <0.0001 0.080 0.0059 * <0.0001
keal unknown Cond. sandwich - 0.123  0.0052 <0.0001 0.080 0.0085 <0.0001
ice bred for Uncond. 0.624 0.0485 <0.0001 0.402 0.0457 <0.0001
spontaneous tumors Class. cond. 0.616  0.0483 <0.0001 0.398 0.0454 <0.0001
with kcal unknown  Cond. sandwich 0.616 0.1736 0.0354 0.0996 0.0259

0.398

model, 0.521 < 31 < 0.711 and 0.309 < B; < 0.487, while for the sandwich model, 0.077 < 81 <
1.155 and 0.088 < B3 < 0.708. In this second data set, we trust the sandwich intervals for £1 more
than with the first data set because it had 13 experiments that varied TCAL significantly between
g’ir_oups, while the first data set had only four such experiments.

“The advantage of the present analysis using the sandwich estimator of the variance compared
to the previous ones is that this analysis does not necessarily assume a constant treatment effect
“ across experiments. The analysis confirms thé conclusions in Freedman et al. (1990), taken from the
' unconditional logistic regression with constant diet effects, that the fat and total calorie coefficients
are significantly greater than zero. However, the confidence limits for the effects are wider with the
" present analysis, especially for the data on the experiments with mice.

5. Discussion

"In this paper, we have explored sandwich variance estimators_ with standardized residuals,
~ particularly as applied to conditional logistic regression. We use Satterthwaite’s approximation
" to estimate a chi-square distribution for the variance of each element of the parameter and create
~tests that use the t-distribution. These tests help to correct for the large variance of the sandwich
estimator and are especially important with a small number of clusters.

- To relate these methods to standard meta-analysis methods, recall that, when there is only one
binary treatment effect, the score test on a conditional logistic regression results in a Mantel—
Haenszel test without a continuity correction (see McCullagh and Nelder, 1989, p- 267). In a
- meta-analysis, one is not usually interested in the results of only the specific experiments included
in the meta-analysis but in typical experiments from a hypothetical population of such studies (see
Berlin et al., 1989). Thus, random-effects models usually are appropriate. The sandwich estimator
of variance is consistent when the true model is a random-effects one in the treatment parameters.
The estimator we propose is a population-averaged estimator of these treatment effects.

The use of the standardized residuals with sandwich estimators may be applied to other models,
such as the truncated logistic regression model of O'Neill and Barry (1995) or the generalized
estimating equations of Liang and Zeger (1986) with a working independence correlation (IEE).
Further study is required on the use of standardized residuals for IEE models. For simplicity, we
prefer the standardized residuals over the recommendation of Diggle et al. (1994) to use REML
estimators. The use of the ¢-distribution for the Wald statistics from the IEE model require_s further
study and may potentially be useful for data with a small number of clusters, '

To our knowledge, the application of sandwich estimators to conditional logistic regression

has not previously been studied in the literature (although there are papers applying sandwich -
estimators to the closely related proportional hazards models; see Lin and Wei, 1989; Binder,
1992). This may be because of the difficulty of the calculation of the conditional logistic regression.
Another reason why this method has not been explored more thoroughly is the availability of two
recent methods, exact conditional logistic regression {see Mehta and Patel, 1995, and the references
therein) and the extended Mantel-Haenszel estimating procedure (see Liang; 1987).
" Although exact logistic regression is useful in many situations, this model does not correct for
misspecification. In other words, if the true model has random effects but this random effect is
not modeled, then the exact logistic regression will not give the correct coverage. Thus, since our
sample sizes are fairly large in the simulation, we would expect that the exact logistic regression
will give similar results as the classical conditional logistic regression.
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The extended Mantel-Haenszel estimating procedure (EMH) forms the estimating equation for
the ith cluster as the sum over a set of pairs of two sample conditional logistic regression score
functions. The set of pairs is defined as all pairs of Bernoulli observations (i.e., animals) with
one case (i.e., with tumor) and one control (i.e., no tumor). The estimating function for 8 is a
linear combination of the estimating equations for each cluster. Two variance estimators have been
proposed. Using & sandwich variance estimator, the EMH allows for dependency within cluster (i.e.,
experiment) and is valid as the number of clusters goes to infinity, just like the conditional logistic
regression with sandwich estimators., The advantage of EMH is that, by using the other variance
estimator, it may be used when the number of clusters is constant and the number of responses
per cluster (i.e., animals per experiment) goes to infinity. The disadvantage of EMH -as compared
to the conditional logistic regression is that it is less efficient under constant treatment effects. An
area of further work would be to compare the two methods under random treatment effects.”

Finally, we caution against the indiscriminate use of the sandwich variance estimators with
conditional logistic regression. Recall these estimators are valid as the number of clusters with
information about the parameter grows large. Although the use of the t-distribution accounts for
this small cluster sample in some way, we stress that the sandwich variance estimators are quite
variable for these small cluster sizes. Thus, if the classical variance estimator is larger than the
sandwich estimator (as in the first data set of Section 4), we recommend using the largest of the
two estimates to give more robust inferences. '
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RESUME

Motivés par une méta-analyse sur des expérimentations animales concernant leffet de la
consommation de graisse et de 'apport calorique sur la carcinogenése mammaire, nous avons exploré
V'utilisation des estimateurs “sandwich” de la variance dans les modeles logistiques-conditionnels.
La régression logistique conditionnelle classique suppose que les paramétres sont & effets fixes sur
Vensemble des clusters, alors que I'approche avec les estimateurs “sandwich” permet de faire des
inférences avec des effets fixes aussi bien qu’avec des effets aléatoires. Cependant V'utilisation du
test de Wald avec un estimateur “sandwich” suppose que chaque paramétre est estimé sur un grand
nombre de clusters. Comme notre exemple viole cette condition, nous introduisons 2 modifications
dans le test standard de Wald. D’abord, nous réduisons le biais de l'estimateur empirique de la
variance (le milieu du “sandwich”) en utilisant des résidus standardisés. Ensuite, nous réglons le
probléme des variances de ces estimateurs en utilisant une distribution de Student, plutdt qu'une
distribution normale, ol les degrés de libertés sont estimés par approximation de Satterthwaite.
Au travers de simulations, nous montrons que ces estimateurs “sandwich” sont aussi bons que les
estimateurs classiques lorsque les vrais effets sont fixes, et sont bien meilleurs que les estimateurs
classiques lorsque les effets vrais sont aléatoires. Nous avons élargi le champ des simulations pour

2

ces estimateurs “sandwich”. & des cas oli certains parameétres sont estimés & partir d’un petit nombre
de clusters.
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APPENDIX

Likelihood for Conditional Logistic Regression

See Section 2.1 for notation. Conditioning on o’ = [a

1 '+ ak], the (conditional) likelihoqd for
the ith cluster is proportional to '

I — _ ct:)exp(t;B)
" e, W) exp(Wp)’
where ; = {u:u= 2;,‘;1 Yj*zij, 2?;1 Y;-* = ai, and Y}* are integers with Y[ < myj; for all 5} and

c(u) is the number of values of Y* that give u = X7\ V2 under the conditions 2_?;1 Y/ =qy

and Yj* < mi; (see Cox and Snell, 1989; Mehta and Patel, 1995). In other words, the set Q,; is the
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set of all the different possible values of t; given different possible values of Y; with e; total Positive
responses, and ¢(t;) is the number of ways to obtain t;.

We take the derivative of the full (conditional) log-likelihood with respect to 8 to get the scorg
equations U(3),

8 o(t;)etiP
UiB)=) zzlog| =7~
9 2oucq, C(u)er’s

; log[e(t;)] + 8 — log Z c(u)eu/ﬂ

uEL;

(t: — E(t; | #),

Dues uc(u)e? 8
e, cwerP
Also, D; = (8U:(B))/(88') is a p x p matrix with the =, sth element equal to
OLEB) = Divicqn wipuige(us )P Zu,eﬁ, wirc(u;)ePut e uise(ug)elv
0BrBs D useq, cluwi)elu ueq, Clu)ePu ) > eq, clui)efw

E(t; | B) = E(t; | Zi;a58) =

where u;,- is the rth row of u;.




