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SUMMARY. We present a pseudolikelihood approach for analyzing a two-stage population-based case—
control study with cluster sampling of controls. These methods were developed to analyze data from a
study of nonmelanoma skin cancer (NMSC). This study was designed to evaluate the role of ultraviolet
radiation (UVB) on NMSC risk while adjusting for age group, which is known for all subjects, and for
other individual-level factors, such as susceptibility to sunburn, which are known only for participants in
the case—control study. The methods presented yield estimates of relative and absolute risk, with standard
errors, while accounting naturally for the two-stage sampling of the cohort and cluster sampling of controls.
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1. Introduction

In this paper, we analyze population-based, two-stage case—
control data with cluster sampling of controls. The methods
we present were motivated by the following study of the ef-
fects of ultraviolet radiation on the risk of nonmelanoma skin
cancer (NMSC).

Short wavelength ultraviolet radiation (UVB) is known to
cause nonmelanoma skin cancer. An ozone layer surrounds
the earth and filters out most short wavelength ultraviolet
radiation (UVB) before it can reach the earth’s surface. The
thickness of the layer and the effective angle of incidence vary
with latitude in such a way that the amount of UVB reaching
the earth’s surface also varies with latitude. The farther a
location is from the equator the smaller the total amount of
damaging UVB that reaches that location.

In order to study the effects of UVB on the risk of non-
melanoma skin cancer while controlling for other factors like
skin color, the National Cancer Institute (NCI) and the Envi-
ronmental Protection Agency (EPA) conducted a population-
based case—control study in nine separate regions of the United
States. Since nonmelanoma, skin cancer is often treated with-
out hospitalization, case ascertainment is difficult. Therefore,
a special study was required to estimate the incidence of
NMSC at each of these locations. For 1 year at each loca-
tion, all dermatologists and physicians treating skin cancer,
as well as all pathology laboratories and hospitals, were con-
tacted to ascertain nonmelanoma skin cancer cases at that
location. The level of UVB at each location was also mea-
sured (Scotto et al., 1988}, and the regression of log cancer
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incidence on In(UVB) and age group was used to study the
relationship between nonmelanoma incidence, age group, and
annual UVB insolation (Scotto, Fears, and Fraumeni, 1981;
Fears and Scotto, 1983).

In addition to the incidence surveys, case—control interview
surveys were carried out at each of the nine locations to de-
fine individual risk factors in greater detail (Scotto, Fears,
and Fraumeni, 1982). At each of the nine locations, the tele-
phone interview survey designs were similar. Information was
obtained on epidemiologic items of interest, including the indi-
vidual’s natural susceptibility, i.e., questions about eye color,
hair color, ancestry or ethnic group, and skin complexion,
and the individual’s environmental susceptibility, i.e., ques-
tions about residence mobility, occupations, outdoor exposure
habits, and exposure to materials that harm or protect the
skin. A simple random sample without replacement (SRS) of
450 cases was selected from the cases aged 20-74 ascertained
in the incidence study, and an additional 50 cases (a further
SRS) were selected from the younger cases aged 20-49. Physi-
clan permission was required before selected patients were
contacted, resulting in low response rates at some locations.

To obtain the controls, a general population survey (GPS) _
was conducted at each location. At each location, at least
500 households were sampled using a two-stage random digit
dialing (RDD) cluster sample (Waksburg, 1978). In the first
stage of each RDD sample, 100 clusters of 100 telephone num- -
bers were selected based on the first five digits of seven-digit
telephone numbers available for use at a location. Clusters
were selected with probability proportional to the number of
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households in the cluster. Telephone numbers within a se-
lected cluster were then sampled until five households were
identified. An attempt was made to interview all adults aged
20-74 in each selected household.

If the RDD sample is self-weighting, the sample means are
unbiased estimates. Even so, the association of telephone ex-
changes with neighborhoods is a source of intraclass corre-
lation. Such correlations tend to increase variance compared
with SRS because clusters usually have less information. The
extent of the increase in the variance of logistic parameter es-
timates (see Section 3) is diluted, to some extent, by the fact
that cases are obtained by simple random sampling (Graub-
ard, Fears, and Gail, 1989).

In addition to the general RDD samples, supplemental sam-
ples in the RDD clusters focused only on adults aged 65-74.
A second supplemental sample of those aged 65-74 was ob-
tained from an available Health Care Financing Administra-
tion (HCFA) file, and it was regarded as an SRS from the
general population aged 65-74. The control sample thus con-
sisted of a two-stage cluster sample with two supplemental
samples, one RDD and the other SRS, taken to oversample
the oldest age group. The numbers of interviews, after post-
stratification by age group, are given in Table 1 for both cases
and general population samples and sampling methodology.

This study can be regarded as a two-stage case—control de-
sign. In the first stage, all individuals in the nine regions are
classified by disease status (incident case within the 1-year
study period or noncase), gender, 5-year age group, and UVB
exposure level (each region had its own exposure level). In
the second stage, cases are sampled using SRS and controls
are sampled using RDD. Second-stage sampling fractions for
the case—control study depended on region, age stratum, and
disease status. The case—control data yielded additional infor-
mation on factors that influence the risk of NMSC. Because
the entire population is classified in the first stage, this is
a population-based case—control design and, consequently, we
can estimate absolute exposure-specific risk as well as relative
risk.

Published methods for analyzing two-stage case—control
data by White (1982), Breslow and Cain (1988), and Flan-
ders and Greenland (1991) assume that controls are obtained
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in the second stage by simple random sampling. Graubard et
al. (1989) developed modifications of the standard Mantel-
Haenszel and Wolfe-Haldane methods for one-stage case—con-
trol studies with cluster sampling of controls. Modifications
of logistic regression analysis that account for cluster sam-
pling of controls have also been developed for one-stage case—~
control designs (Graubard and Gail, 1992; Graubard, Gail,
and Brogan, unpublished manuscript), but these methods do
not address the special features of the sampling employed in
the NMSC study. In this paper, we employ a logistic model
and extend the pseudolikelihood approach used by Flanders
and Greenland to account for the complexity of the control
sampling scheme; unlike Flanders and Greenland, we must ac-
count for cluster sampling of controls. The pseudolikelihood
method allows us to exploit the population-based element in
the sampling and to estimate absolute risk as well as relative
risk. In the example we present, the cluster sampling is not
self-weighting because some households have more than one
telephone number. We use proper weights to obtain unbiased
estimates of parameter effects. Ignoring the effects of cluster-
ing, but allowing (incorrectly) for the fact that cases and con-
trols were selected by simple random sampling, yielded very
slight underestimates of variance in this example. Nonethe-
less, we would always recommend appropriate adjustments
for clustering, which may have larger effects on variance in
other applications.

2. The Model and Pseudolikelihood Inference
2.1 The Model and Pseudolikelihood Approach

There are nine locations (I = 1,2,...,9), and within each
location, we consider three age strata (s = 1,2,3), i.e., ages
[20,49], [50,64], and [65,74]. We will use X to denote an
individual-level covariate vector of dimension 71 X 1 measured
for all subjects at baseline. Each component of X takes on
only a finite number of values; thus, X is a discrete vector
random variable. A component of X may take on many
values for individuals within a category defined by location
and age, as is the case for age, or take on the same value
for all individuals in the stratum, as is the case for UVB
insolation. We will use T to denote a discrete covariate vector
of dimension 79 x 1 measured only in the interviews of selected

Table 1
The population characteristics and number of interviews by age stratum and sampling method

General population samples

Population  Total number Age 65-74 Case samples
UVB size of cases Age 20-64 HCFA  Age 20-49  Age 50-74

Location units  age 20-74 age 20~-74 RDD RDD SRS SRS SRS
San Francisco/OQakland 150 1,727,340 4994 805 120 62 72 196
Minneapolis/St. Paul 104 1,117,245 2309 925 170 109 332
Detroit 101 2,008,798 3514 625 128 65 103 271
New Mexico 197 669,383 2510 980 141 61 106 315
New Orleans 186 453,458 2212 595 138 62 46 204
Seattle 95 716,988 1612 532 135 86 256
Utah 136 723,156 2654 687 165 84 99 247
Atlanta 153 775,844 3365 615 142 61 127 271
San Diego 175 1,063,730 5169 514 151 38 229
Total 9,255,942 28,339 6278 1290 395 786 2321
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cases and controls. The covariates X and T are treated sep-
arately because information about X variables is available
for all individuals in the study populations, while informa-
tion about T variables is available only for those in the case—
control samples. The number of individuals at location I in
age stratum s with covariate levels x and t is M(l,s,x,t),
and the number of such cases observed during the study pe-
riod is D(l, s, X, t).

Each individual in a finite population is assumed to become
diseased or not (Y'=1 or 0) according to a causal logistic risk
model,

exp {Y(a+AX+7T)}
{1+expla+B8X+yT)}

If each individual had known values of I, s, x, and t, the
population log likelihood would be

L=%{D(,sxt)(a+Bx+7't)
— M(l,s,x,t)In [1 +exp(a+ Bx+7'D)] },

Pr(Y | X,T) = 21

where the summation is over all levels of [, s, x, and t. If we
use a + to indicate summation on the corresponding index,
the resulting (1 + 1 + 7r2) estimating equations are

D+, +,+,+) = > M+ +x,8)p(c. 8, 7:x,8) =0 (22)

xt

D xD(+,%,+) - > xM(+,+,x,8)p(e 8,7, %,8) =0
x xt
ZED(_F’ +’ +’t’-) - ZLM(-F? +7..)£7 E)p(a>g) 17 K;E) = 0’
t x,t
where ’
(e, 8,7, %,t)

= exp (a+g/§+1/§)/{l+exp (a+@’§+1’§)}.

If D(+,+,x,t) and M(+,+,x,t) were known, these equa-
tions could be solved iteratively for o, ['3, and 4. The to-
tal number of cases, D(+,+,+,+), is known because the
stratum subtotals D(1,s, X, +) are known; also the quanti-
ties M(l,s,x,+) are known. The terms D(+,+,+,t) and
M (+, +,X%, t) are not known, however, because we have mea-
sured t only on sampled members of the population. We ob-
tain pseudolikelihood estimates (Gong and Samaniego, 1981)
for o, B, and -y by substituting consistent estimates (see Sec-
tion 3.2) for D_(+, +,4+,t) and M{(+, +,X,t) in these estimat-
ing equations. For informal assessment of goodness-of-fit, we
also compute a pseudo log likelihood by substituting these es-
timates of a, B, v, D(+,+, +,t), and M(+,+,x,t) into the
log likelihood above.

It should be noted that the overall exposure level of UVB
and location are totally confounded. Thus, it would not be fea-
sible to allow for separate intercepts for each location in equa-
tion (2.1) and also to estimate the effects of UVB, which cor-
respond to components of 3. Some of the effects attributed to
UVB in this model might represent other location-specific fac-
tors not otherwise represented in X or T. If, however, model
(2.1) is correct, the analyses presented will yield proper esti-
mates not only of relative risk parameters 8 and ~ but also

of the intercept o. Recall that o is the In odds of disease for
persons at levels X = T = 0; thus, o can be used to estimate
baseline risk. Hence, absolute, as well as relative risk, can be
estimated in this population-based study.

2.2 Consistent Estimates of Terms Needed in the
Pseudolikelihood :

Classical sampling theory can be used to obtain the consistent
estimates necessary for the pseudolikelihood equations. First,
an estimate for M(l,s,x,t) is developed. The basic general
population samples and one supplemental sample for the
age group 65-74 are RDD samples, which are probability
samples of household telephone numbers. Individuals living in
a household with one telephone number have the same pro-
bability of selection, but those with two household telephone
numbers are twice as likely to be selected. Weighting the latter
individuals with a weight of one half allows the expectation
of stratum-specific counts to be obtained. If m(l, s, x,t) is the
weighted number of individuals with confounder values x and
t in the general population sample (GPS) at location ! in
stratum s, then

E {m(l7 s, 37 t)} = m(l7 s) +) +)M(l7 s, 57 E)/M(l7 8’ +7 +)'
From sampling theory, the ratio estimator,
M, s,x,t) = M, s,+,+)m(l, s,x,8)/m(l, s, +,+),

is a consistent estimator for M(l, s, %, t). For age stratum 65—
74, the same procedure is used, but m(l, 3, X, t) is the weighted
sum of counts in the GPS and supplemental sample.

Similarly, the basic case (patient) samples and the sup-
plemental case samples in the age group 20-49 are simple
random samples. Since the supplemental sample falls within
a single age stratum, the counts of cases in each stratum
are obtained without weighting. If d(l,s,+,t) is the num-
ber of cases with covariate value t in either case sample at
location [ in stratum s, then E {d(l,s,+,t)} = d(l,s,+,+)
D({l,s,+,t)/D(,s,+,+), where d(l,s,+,+) is the number
of cases selected at location I, stratum s. It then follows
that D(l,s,x,t) = D(l, 8,4, +)d(l, s, x,t)/d(l,s,+,+) is a
consistent estimator for D(l, 3, x,t).

An estimate for T¢tD(+,+,+,t) based on the case
samples is

33t s, + 0D s+, +)/dl 5,4, +)

s t

Z D(l> S, +’ +)£(l7 3)7

l,s

where t(l, s) = Sg td(l, s, +,8)/d(l, 5, +, +).

Other estimates required for the pseudolikelihood equations -

are obtained analogously from the general population sam-
ples. First, Ex ¢ M (+, -+, x, t)p(a, 8,7, X, t) is estimated by

m(l, s, X, t)
22 s, ) M TR B2

=5 M@+, H)p(e,6,7,L9),

l,s

where

CHE) |
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where

70 B,1:0h9) = Y p(e 8,7, 3 OIm(l, 5, %, 8) /mll, 5, +, +).
x,t

Similarly, Xx ¢ XM (+, +, %, £)p(a, 8,7, X, t) is estimated by

ZZ xm(l, s,x,t) M(l 5+, +)p(a, B, %, t)

4, s,+,+)
xt Is
=Y M(l,s,+,+)%B(, 8,74 5),
l,s
where
E(a)gal’las)
= Z_&p(a,g, Y, x,8)m(l, s, x,8)/m(l, s, +, +).
,’_‘7&

Finally, Xy ¢ tM(+, +,x, t)p(a, B,7,%,t) is estimated by

Zzt%ml, 8,4, )p(e, By, %, 1)

= M(l,s5,+,+)Ep(. 8,7, 1 9),

l,s

where
E(a7g7 17 l, S)
= to(e, B,7, % tym(l, 5, x,£)/m(l, 5, +, +).
x,t

The estimating equations based on the pseudolikelihood
reduce to

D(+a+a+>+) - ZM(1753+7+)E(Q1§_)1’173) =

l,s

ZXD(+ +,%,4) = Y M(ls,+, +)%B(e 8,7, 1,5) = 6,
l,s

and

Z D(l,s,+,+)t({,s)

l,s

- ZM(Z>S>+7 +)E(a7gal7l78) = g

l,s

The first equation corresponds to «, the second,
third, ..., (r1 + 1)th equations correspond to the components
of X, and the r; + 2,71 + 3,...,7r1 + (r2 + 1)th equations
correspond to the components of T. These equations can be
collected into a (rq + r2 + 1) x 1 vector E, which is a vector-
valued function of «, B, and v. The equation E(x, ,6,'7) =0

can be solved iteratively for estimates &, B, and 4 using
the Newton—Raphson procedure, which is based on the first-
order Taylor series expansion of E. The required vector of
derivatives is provided in Appendix 1 and is denoted by E*.

2.3 Covariance of the Estimates

The covariance of &, [3, and % is based on the sandwich esti-
mate Avar(E)AT, where A‘1 = E* and var(E) estimates
var(E). This sandwich estimator arises from the aforemen-
tioned Taylor-series expansion, which, when evaluated at &,
ﬁ 4, allows one to approximate (& — «, (ﬂ BY, (] - 'y) i

as —AE. The quantities D(l,s,x,t) are regarded as Poisson
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variables with var[D(l, s, x, t)] estimated by D(l,s,x,t) and
with cov[D(l, s,x,1), D(l',s',x',t')] estimated by zero unless
I =10, s=5,x =% and t = t. Thus, the estimated
variances of D(+, 4+, +,4) and &; ; xD(l, 5,x, +) are D(+, +,
+,+H)and 5; o x _}gTD(l, s, X, +), respectively. Their estimated
covariance is X xD(l,s,x,+). The estimates of the
variance of ¥; , D(l, s, +,+)t(l,s) and its covariances with
D(+,+,+,+) and % ;xD(l, 5,x,+) are given in Appendix
2. The general population control sample and the case sample
are independent; thus, terms involving D and terms involving
M in the log pseudolikelihood are independent. The M
terms are sums of ratio estimators whose variances and
covariances are obtained from classical sampling theory for
cluster samples. While the method by which self-weighted
samples were obtained does not alter the expectation of
sample means, the variances are affected. Details are provided
in Appendix 3.

3. A Numerical Example

As described in Section 1, the nonmelanoma skin cancer study
provided complete population information on incidence rates
by 5-year age groups and UVB levels. Thus, the estimating
equations for a logistic model based only on these two
factors, the first two equations in expression (2.2), can be
specified without recourse to the case—control data. We used
this approach to develop a risk model involving age and
UVB but not other factors such as skin color. Five-year
incidence rates for males 20-74 were analyzed using the SAS
procedure, PROC LOGISTIC (SAS Institute, 1989). Models
were compared to a main effects model with 8 d.f. for the
nine locations and with 10 d.f. for the 11 age groups (see
Table 2). Taking age to be the midage of an age group, either
age or In(age) could be regarded as a continuous covariate
to replace the 10 age group variables, but together they
were nearly as effective as the full model (a chi-square on
8 d.f. of 197,593 — 197,581 = 12, p = 0.15). On the other
hand, the fit is not good when the eight location variables
are replaced with simple models using UVB or In(UVB)
(e.g., for the model using In(UVB), age, and In(age), x? =
198,545 — 197,593 = 952, p < 0.001) or with complex models
using these variables (e.g., for the models using UVB, UVB?,
age, and In(age), x* = 198,432 — 197,593 = 839, p < 0.001),
indicating that host factors or location-specific factors other
than UVB partly account for variation in rates. Despite the
poor fit, we estimated the effect of In(UVB) to measure UVB
exposure because the coefficient of In(UVB) has been used in
previous studies and is readily interpretable. From Table 2,
the coefficient of In(UVB) is 1.46 with standard error 0.03.
According to this model, the relative odds of disease in a
person exposed to a 1% higher level of UVB, compared to
a baseline exposure level, is odds ratio = 1.01%% = 1.0146.
The excess relative risk (in percent) corresponding to a 1%
increase in UVB exposure is (1.0146 — 1) x 100 = 1.46%,
which is called the biological amplification factor (BAF) in
the literature on risk from UVB (Scotto et al., 1982).

To obtain a better fitting model and to adjust the estimated
effect of In(UVB) for host factors that were measured only
in the case—control surveys, we used the pseudolikelihood
method in Section 2. First, adjusting only for age and In(age)
in the pseudolikelihood but not for other covariates, we obtain
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Table 2
Comparison of models
In(UV) —2 x log
coeflicient -2 x log pseudo
Data set Method Model d.f. + SE likelihood likelihood
Population with 5-year
age groups Logistic Age groups + locations 19 na 197,581
Population with 5-year
age groups Logistic Age + In(age) + locations 11 na 197,593
Population with 5-year
age groups Logistic Age + In(age) + In(UV) 4 1.46 4 .03 198,545
Weighted samples Pseudolikelihood  Age + In(age) + In(UV) 1.39 + .04 198,874
Weighted samples Pseudolikelihood  Age + In(age) + In(UV)
+ ancestry 1.43 4+ .04 198,502
Weighted samples Pseudolikelihood  Age + In{age) + In(UV)
+ burn/tan
+ outdoor occupation 1.31 4+ .065 195,448

an estimate for the coefficient of In(UVB) of 1.39 £ 0.04. The
BAF is then estimated as {(1.01)1%% — 1} x 100 = 1.39 with
a 95% confidence interval (CI) of 1.31-1.48. Note that the es-
timate 1.39 differs slightly from the maximum likelihood esti-
mate 1.46 (Table 2) because the former method relies on av-
erages of sampled exact ages within broad age strata, whereas
the latter method uses the population age distribution in 5-
year groups.

Another important host factor is skin color. Dark-skinned
individuals tend to be resistant to UVB-induced skin can-
cer. This characteristic is especially common among people
of Mexican ancestry. An indicator of Mexican ancestry in the
presence of the other terms in the previous model is significant
(p < 0.001 by the Wald test) and suggests an especially low
odds ‘of disease (relative odds: 0.08, CI: 0.03-0.23). However,
the distribution of individuals with Mexican ancestry across
the study locations is such that the coefficient of In(UVB),
1.43, is hardly changed (BAF: 1.43, CI: 1.34-1.52). The fit of
the model, however, is apparently improved by inclusion of
Mexican ancestry, as indicated by a decrease in —2 X pseudo
log likelihood from 198,874 to 198,502 (Table 2). Although
exact significance tests for pseudolikelihood ratios are diffi-
cult (Liang and Self, 1996), this large decrease is indicative of
improved model fit.

Other strong host factors include sunburn or suntan char-
acteristics and patterns of outdoor exposure. Indicators for
sunburn—suntan characteristics and outdoor exposure on prin-
cipal occupation were significant when added to the basic
model as judged by the Wald test (Table 2). The referent
group was males who are rarely or never outdoors for their
principal occupation and who develop a dark tan and do not
sunburn. Those who burn but do not develop any tan have a
relative odds of 3.35 (CI: 2.51-4.48); those who burn and de-
velop a light tan have a relative odds of 2.73 (CL: 2.19-3.40);
and those who burn and develop an average tan have a rel-
ative odds of 1.83 (CI: 1.53-2.17). Those who are outdoors
frequently or occasionally on their principal occupation have
a relative odds of 1.19 (CI: 1.01-1.39). Inclusion of all these
factors in the model resulted in a lower, but somewhat less
precise, estimate of the effect of In(UVB), 1.31 (BAF: 1.31%,
CI: 1.17-1.43). Notably, —2 x pseudo log likelihood is reduced

substantially to 195,448, which is even smaller than —2 X log
likelihood in the model with saturated location effects (row
1, Table 2).

Suppose conventional logistic methods are applied to ana-
lyze the case-control data. Because the ratio of cases to con-
trols in each location does not reflect the ratio of total cases to
population size in each location, a standard logistic analysis
that includes location or a location-level factor, such as UVB,
will yield meaningless results. This distortion is analogous to
naive analysis of the second-stage in a two-stage case—control
design (Breslow and Cain, 1988).

Another, more appropriate logistic analysis of the case-
control data would reweight cases and controls in each loca-
tion and age stratum to represent all the cases and the total
population in each location and age stratum. Because this
reweighting inflates the apparent study population, a naive
logistic analysis of the reweighted data will have an unre-
alistically small estimate of variance and covariance of ex-
posure effects. Within each of eleven 5-year age groups at
each location, the base weights for cases and population size
are separately adjusted (or poststratified) so that the sum of
poststratified weights within a location and age group equals
the known total number of cases and controls. The variability
of these poststratified weights is ignored. Adjusting for age,
In(age), sunburn-suntan characteristics, and exposure habits,
this naive logistic analysis yields an estimate for the coeffi-
cient of In(UVB) of 1.33 with standard error (SE) of 0.033.
The correct standard error estimate, based on the methods of
this paper, is 0.065. The standard errors of other coefficients
are also much too small. For example, the SE for the esti-
mated coefficient for outdoor exposure is 0.016, compared to
the more appropriate estimate 0.081. Thus, the use of stan-
dard logistic methods with poststratified weights results in a
serious underestimation of standard errors.

The use of cluster sampling with subsampling (RDD) al-
lowed identification of general population controls with enor-
mous cost savings compared with simple random sampling
of individuals, but how seriously were standard errors af-
fected? To assess this issue, we considered a setting in which
all households have only one phone; thus, RDD results in a
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self-weighted probability sample of individuals with a tele-
phone and the usual sample variances and covariances of X
and T are consistent for population covariances. From these
estimates of population covariances, we estimated var(E) and
the standard errors of «, 8, and v under SRS (without replace-
ment). For simplicity, the HCFA supplement was ignored and
one host factor, outdoors on principal occupation, was used.
The standard errors calculated under cluster sampling are
only slightly different from those estimated assuming an SRS
of comparable size. We estimated the standard error of the co-
efficient for In(UVB) as 0.051 taking clustering into account,
and as 0.050 assuming an SRS of the same size. The estimated
standard error of the coefficient of outdoor exposure on prin-
cipal occupation was 0.079 adjusted for clustering and was
0.077 under SRS. Thus, the use of cluster sampling reduced
cost substantially but had a minimal effect on estimated stan-
dard errors.

To illustrate that this approach yields estimates of absolute
as well as relative risk, we consider a 42-year-old male living in
Seattle who burns, gets an average tan, and works outdoors
occasionally. His 1-year estimated risk of disease incidence
is 0.00175 (CI: 0.00149-0.00204). The confidence interval is
obtained from the estimated parameter covariance using the
delta method (Rao, 1965). If this person had been living in
San Diego, where the UVB is much higher, the annual risk
would instead be estimated as 0.00386 (CI: 0.00337-0.00442).

4. Discussion

This paper shows how the pseudolikelihood approach used
by Flanders and Greenland (1991) and by Benichou and Wa-
cholder (1994) can be adapted to estimate absolute and rel-
ative risks from a two-stage, population-based case-control
study with cluster sampling of controls. The approach is quite
general and can be used for case-control studies that employ
other complex designs for sampling either cases or controls.
One can also use jackknife or half-sample replication methods
(Wolter, 1985) to account for the components of variance due
to complex sampling.

A special feature of the present study is that information on
age groups, location (and hence UVB insolation), and disease
status are presumed known on all subjects, whereas other
characteristics, such as susceptibility to sunburn, were ob-
tained only from the imbedded case-control data. The two-
stage nature of the sampling can be handled naturally by
the pseudolikelihood approach, adapted for cluster sampling.
Breslow and Zhao (1988), in correcting an earlier analysis of
Fears and Brown (1986), showed how to take the two-stage
sampling into account when calculating variances, but their
discussion did not extend to a treatment of cluster sampling.

The example in this paper suggests that one can enjoy the
economies of cluster sampling with very little loss of efficiency,
compared to simple random sampling, in this population-
based two-stage case-control design. Also, this example sug-
gests that one will not be seriously mislead by treating self-
weighting cluster sampling of controls as simple random sam-
pling, which simplifies Appendix 3. We do not recommend
this approach, however, because the effects of clustering on
standard errors may be larger in other applications. The ex-
ample also illustrates that absolute risks, as well as relative
tisks, can be estimated from this design.

Although the pseudolikelihood approach yields estimates,
standard deviations, and Wald-type statistics for evaluating
coefficients in risk models, the distribution of log-pseudolike-
lihood ratio statistics is not simple (Liang and Self, 1996) and
additional work would be useful to derive improved methods
for model selection and evaluation of model fit. In substantive
applications of these methods, we plan to explore modifica-
tions of the model to better describe the relationship between
NMSC risk with UVB exposure and measures of host suscep-
tibility and behavior. We will compare observed and predicted
disease odds ratios within categories defined by age group, lo-
cation, and levels of factors like susceptibility to sunburn and
also compare observed disease rates in categories defined by
age group and location with expected rates calculated by aver-
aging over the mix of individual factors, such as susceptibility
to sunburn, for each age group and location.
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RESUME

Une approche basée sur la pseudo-vraisemblance est présentée
pour analyser en 2 étapes une étude cas-témoin, avec un
échantillonnage par groupe pour les sujets controles. Ces mé-
thodes ont été développées pour analyser les données d’une
étude sur le cancer de la peau autre que mélanome (NMSC).
Cette étude avait pour objectif d’évaluer le réle du rayon-
nement ultraviolet sur le risque de survenue des NMSC en
ajustant sur les groupes d’age, qui était connu chez tous les
sujets, et sur d’autres facteurs individuels relevés seulement
chez les participants & 1’étude cas-témoin, comme la sensi-
bilité aux coups de soleil. Les méthodes présentées permettent
d’estimer le risque relatif et le risque absolu, avec leur erreur
standard, en tenant compte de I’échantillonnage en 2 étapes
de la cohorte d’'une part, et des groupes de sujets contréles
d’autre part.
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APPENDIX 1
The Derivatives of the Pseudo Log Likelihood Equations
Assume 7 =72 = 1 so that E' = (E1, B2, E3) has only three

components. Then

By
E ——IZM(I’S’+’+)

3PS 0t

z,t

dEy _
dﬁ - ZZSM(Z)5,+1+)

m(l, s, +,+)

X Zw m(l’s’m,t) p(a,ﬁ, ’Y,Cﬂ,t) {1 —p(z‘,t, & ’3’7)}
z,t

B
7 =~ 2 M)

l,s

March 2000

lv ) it
X Zt%p(a, ,B,’y,il),t) {1 “p(mat>a’ﬂa’7)}

T,
dEy
Tiﬁ— = —;M(Z,S,’*‘,'F)
o m(l, s, z,t)
—_— 2
X ;tw m(l,s,+’+)p(a,ﬁ,%w, )
X {1 —p(z,t,a,ﬂ,'y)}
dEo
— = M l)S)+7+

m(l, s, x,1)
x Z mtm(l, s, +, +)p(a, rv.et)

x,t
X {1 —-p(x,t,a,,@,’y)}
dEs3
= M l,S,+,+
= ZZ ( )
o m(l, s,z,1)
t———= t
x Zt o NG
X {1 —p(iﬂ,t, a,ﬁ,')')} .

Note that
aBy _dB  dE_dBy . B dEp
da ~ dB’ da ~ dy’ g~ dv’

Extensions to r1 or 72 > 1 are straightforward.

APPENDIX 2

Variances and Covariances of
Estimates Based on the Case Sample

In this section, we provide an estimate for the variance of the
case sample-based estimate, £ 5 D(I, s, +, +)t(l, s), as well as
estimates of its covariances with the incidence survey counts,
D(+,+,+,+) and Uk xD(+, +, %, +).

The variance estimate was obtained using a conditioning ax-
gument. First, conditional on the D(l,s,+,t)’s and regarding
the sample sizes d(l, s, +,+) as fixed constants, we compute
the conditional expectation of £y s D({, s, +,+) t(,s) as

ZZQD(Z,S,—!—,Q). (A2.1)

ls t

Again, conditional on the D(l,s,+,t)’s, the conditional vari-
ance of £; s D(l, s, +, )i, ) is

2 — d(ly3,+7+)
zzs:D (l,s,+,+){1 Dt

y Yt D(Ls,+t)
[D(l, s, +, +) - 1]d(la s+, +)

T
{ZﬁgD(l,s,m)} {£. £D(1,s5,+,9) }
= D(, s+, NP0 s, +,+) — Ud(l, 5,4, +) '

(A2.2)
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‘which includes a finite sampling correction factor for SRS.
“The unconditional variance of %, s D(I, s, +, +)t(l, s) is then
“the variance of (A2.1) plus the expectatlon of (A2.2). Now
“the variance of (A2.1) is &, ;S¢t t var{D(l 8, +,t)}, which

s estimated by

S D@5 +,4) > tt"

l:s t

d(l,s,+,8)/d(, s, +,+).  (A2.3)

The estimate

2 _ d(l,S, +,+)
lz:p (l,s,+,+){1 Bl e 1)
,8

[ St thd, s, +,t)

{d(lv 5, +) +) - 1} d(la S, +a +)

{Et td(l, s, +, t)} {Et td(l, z +,t)}
Cd(l, s+, 0 {d s, +) — 1rd(l, s, +, )
(A2.4)

has the same expectation as (A2.2) and can therefore be used
to estimate the expectation of (A2.2). The estimate of the
variance of X; ; D(l,s,+,+)¥(l,s) is then obtained by sum-
ming (A2.3) and (A2.4).

Consider the estimation of the covariance of ¥ ¢ D(l,
s, +, H)E{l, s) and D(+, +,+,+) = El sD(,s,+,4). The co-

variance of D(l s,+,+) and D(I', s, +, +)E (l’ ') is zero for
1#1U or s # s because D(l,s,++) and D(l',s',+,4) are in-
-dependent. Thus, we can restrict attention to the covariance of

D(l, s,+,+)t(l, s) with D(l, s, +, +). The expectation of their

‘product conditional on the D(I,s,+,t)’s is D(l,s,+4,+)x
Sg £D(l, 8,4+, t), which can be written

ZD(I s+, t)ZtD(l 8+, t)
=Y tD%(,s +t)+ZtD(l si+8) > D(l, 5, +,8).
t

At
The unconditional expectation of the product of D(l, s, +, +)
xt(l, s) and D(l,s,+,+) is then

> t[E{D(,s+,0)} + B {D(,5,+1)}]

+ > tE{D(,s,+,1)}
t

X [B{DU 544} - E{D(, 5+ B}
= Z.&E {D(l, S, +7§)}
t

+EQ > tD(,s,+,t) ¢ E{D(l,5,+,+)}.
t

It follows that the covariance of D(l, s, +, +)&(l, s) and D(l, s,
+,+) is the first term, % tD(1, s, +, t). Thus, the covariance
of 3 s D(1, s, +,+)E(l, 8) and D(+, +, +, +) is Yy,s T tD(l, s,

+, 1), which is estimated by

> D@, s, +,HE ).

l,s

Similarly, the covariance of Xx xD(+,+,x,+) and ;4 tx
D(l,5,+,t) is estimated by X; s D(l, s, +, +)xt(l, s), where
xt(l,s) = Ix,¢ xtd(l, s, x,t)/d(l, s, +,+).

APPENDIX 3

Variance and Covariance Estimates That
Utilize the General Population Samples

It is sufficient to obtain the variances and covariances for 3,
Xp, and tp We first consider only covariances that involve
(e, B, 'y,l,s) the estimator for

P(a:é, 7 l7 3)
=Yt ML, 5,x,8)p(a, B,7, %, t) /M (I, 5,+, +),

the mean value of p at location ! in stratum s. For s = 1, 2,
these estimates are based only on a random digit dialing
(RDD) sample in which the first-stage clusters are selected
with replacement with probability proportional to the num-
ber of households in each cluster. The probability of selecting
the cth cluster is & = H(l,¢)/H(l,+), where H(l,¢) is the
number of households in the cth cluster at location [ and
H(l,+) is the sum of H(l,c) over all K; clusters in location /.
In the second stage, r households are randomly selected from
each cluster without replacement.

The variance of p(a, B,7,1,5) can be obtained following
classical sampling results (e.g., Cochran, Section 11. 14). In
our notation,

var [{ﬁ(a,é,z,la 5)}]
1

K,
1
X E E;[E M(lasyc>§7t)
c=1 xt

2
x {p(e, B,7,%,t) — P(o, B, 7,1, S)}}

1 H2(l c) r ngc
+kM2(ls++)Z {1_H(l,c)} ma

(A3.1)

where M(l,s,c,x,t) denotes the number in the population
with exposures x and t on the cth cluster and, with §(I, s, c, h,
X t) as the number in the hth household with exposures x and
t, S2 p2c 18 the variance of

Zé(l s,¢,h,x,t) {p(a B, x,t) —

x,t

P(a,8,7,1,9)} -

The first component of var[{p(c, 3,7,1,s)}] in (A3.1) arises
from variation between clusters and the second compo-
nent arises from variation within clusters. The quantities
var[{Xp(«, 8,7,1,5)}] and var[{tp(«, 8,7, 1, 5)}] are obtained
in exactly the same way. T
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Using the clla,ssical methods, we also obtain covariances. For + FM{ s T +)1M(l, R
s=1,2and s =1,2, K
L2
H*(l,e)[1—r/H(,c
cov [{ﬁ(a1é,17l7s):ﬁ(a7 _ﬂ_al,l)sl)}] X Z ( ) [ T'SC / ( )] SILEPZC(S’SI)7
1 c=1

T kMU, s+ ML S, +, )

K,
Z 1 Z

X €_c [ M(l7s)c1¥7§)
c=1 x,t

x {p(a, 8,7, %,t) — Pla, B, 7,1, 8)}1
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where Sp p2c is the covariance of
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3_7!:_
Also for s =1,2 and s’ = 1,2,
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where Sp xp2c(s, s') is the covariance of

> 65, 0,h,%,8) {pley B,7,%,8) — Pla, 8,7, 19)}

xt
and
Y 8 e hx, ) {xpl, B,7,%,8) — XD 8,7, 15} }
x,t

Other needed covariances are obtained using obvious substi-
tutions.

Consistent estimates of these quantities are obtained from
Cochran (Section 11.4, equation {11.39]) after M(l,s,+,+)/
H(l,+) is replaced by m(l, s, +,+)/rk.

For example, an asymptotically unbiased estimate of the
covariance (A3.2) would be

k
(k - 1)m(l7 S, +a +)m(la sla +> +)

k
X Z [Zm(l,s,c,g,g)
e=1 L xt

x {p(a, B,7,%,1) — la, B, 7,1, 8)}]

x [Zm(l,S',c,z,E)
xt

X {p(a>[_3711§’§) ‘—I—)—(a,é,l,l,sl)}:l.

The sampling for s = 3 is more complex. At each location,
there is the base RDD sample (clusters ¢ = 1,...,k) with an
enlarged sample of r* households and an SRS supplement. We
regard the pooled estimate for s = 3 as a weighted average
of the ratio estimate from the RDD samples and the clas-
sical ratio estimate from the SRS. Weights are the expected
sample sizes divided by the total expected sample size. Covari-
ance and estimates can then be obtained easily. The expected
sample size of the RDD sample is M(l,3,+,+)r"k/H(l,+),
which is unknown, and we replace M{l,3,+, +)H(l,+) with
m(l,3,+,+)/r*k. Weights become the observed weighted
sample sizes divided by the total sample size. Note that in
all covariance estimates we also replace P with the pooled es-
timate rather than estimates based only on the RDD sample
or only the SRS.
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