Should the Median Test Be Retired From General Use?
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Although several authors have indicated that the median test
has low power in small samples, it continues to be presented
in many statistical textbooks, included in a number of pop-
ular statistical software packages, and used in a variety of
application areas. We present results of a power simula-
tion study that shows that the median test has noticeably
lower power, even for the double exponential distribution
for which it is asymptotically most powerful, than other
readily available rank tests. We suggest that the median
test be “retired” from routine use and recommend alterna-
tive rank tests that have superior power over a relatively
large family of symmetric distributions.
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1. INTRODUCTION

Nonparametric tests provide a simple and reliable statis-
tical tool in a variety of applications. They posses the de-

sirable property of having the same sampling distribution

for all continuous distributions. For the two-sample location
shift setting commonly used nonparametric procedures in-
clude the Wilcoxon (Wilcoxon 1945), normal scores, and
median (Mood 1954) tests. A number of authors (Ramsey
1971; Conover, Wehmanen, and Ramsey 1978) noted the
poor performance of the median test in very small sam-
ples. Gastwirth and Wang (1987) showed that the loss of
power of the median test relative to the Wilcoxon test in-
creases in the case of highly unbalanced samples. Never-
theless, the median test continues to be used in applica-
tions (Hall, Louw, and Joubert 1995; Paternoster et al. 1996;
Hernberg et al. 1998). Perhaps because of tradition the me-
dian test is presented in basic texts (Riegelman and Hirsch
1989; Sokal and Rohlf 1995; Anderson and Finn 1996; Zar
1998), in virtually all nonparametric texts directed at users
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(Daniel 1990; Hollander and Wolfe 1998; Conover 1999)
and is included in important statistical software packages
(SAS, SPSS, StatXact). In this article we suggest that the
median test be “retired” from routine use and recommend
alternative rank tests that have superior power. In particular,
the asymptotically optimal rank test for the shift alternative
for data from a ¢, distribution (Gastwirth 1970) has superior
power to the median test over a wide family of distributions
in samples of up to 100 in each group.

The median test is valid under weaker conditions than the
other rank tests. All that is needed is for the two distribu-
tions to have the same median and equal density functions in
a neighborhood of that median. Thus, theoretically oriented
texts (Randles and Wolfe 1979; Gibbons and Chakraborti
1992; Hettmansperger and McKean 1998) can use it to il-
lustrate the assumptions underlying rank tests as well as
their large sample properties.

2. BACKGROUND

Let Xi,...,X,, and Y3,...,Y, be independent random
samples from populations with distribution functions F'(z)
and G(y), respectively. The objective is to test the hypoth-
esis Hy : F(x) = G(z) against the location shift alternative
Hy:G(z) =F(z - 9).

All tests considered here are functions of the ranks of
the combined sample. Most of the statistics are linear rank
tests of the form

N
Sn =3 an(i)s,
=1

where ay(7) is the score function, §; is the indicator func-
tion which is equal to one if the ith smallest observation in
the combined sample is from group 2, and N = m + n. For
the median (Mood 1954) test ay () = signum(2i—N—1). In
other words, the test statistic is the number of the members
of the second group that exceed the median of the combined
sample. The median test is asymptotically most powerful
for the double exponential distribution (Hajek and Sidak
1967). This is used to justify its inclusion in some statisti-
cal packages (Sall, Lehman, and Saul 1996). We compared
the performance of the median test with the following rank
tests:

1. The normal scores test (NS) with scores ay(i) =
E(v(;y), where vy;y is the ith order statistic from a sample
of N standard normal variables. This test is locally most
powerful for the normal distribution.
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Table 1. Empirical Power Estimates

n=m=13

Test n=m=5 n=m=9 N=m=25 n=m=50 n=m=100 n=10m= 40 n=75m=25
Under normal distributions
NS 811 .788 .801 .803 .803 .800 797 792
Wilcoxon 812 .785 .795 .790 .785 .784 .780 774
Median .543 .626 .582 597 .604 .607 554 .587
LMPDE .809 722 717 .684 .661 645 656 642
T2 814 741 737 .706 682 .668 672 661
Cauchy 750 615 .584 525 490 472 447 457
KS 677 .675 .700 .683 681 679 676 674
Under logistic distributions
NS .800 791 791 .780 .788 .780 .793 792
Wilcoxon .801 .805 .805 .793 .802 797 .800 .804
Median 572 .689 .638 .649 671 671 607 665
LMPDE .805 777 .766 732 726 .709 71 719
T2 .806 .789 .782 .756 757 746 737 749
Cauchy 762 .696 669 .622 612 .597 543 .588
KS .702 731 743 719 731 726 727 .738
Under double exponential distributions
NS .789 .756 739 707 .700 .666 .763 730
Wilcoxon 792 791 .781 .758 757 731 .798 .782
Median 610 .740 .698 727 .766 770 .661 .748
LMPDE .801 .809 .804 .793 .806 797 .764 794
T2 .798 810 804 .788 793 771 791 803
Cauchy .783 .765 756 747 .763 .749 666 747
KS 734 772 .781 .760 772 .756 .790 795
Under t2 distributions
NS 791 .702 .697 .658 665 .655 721 .694
Wilcoxon 794 757 .760 .730 744 741 779 .768
Median 690 .736 694 .688 716 719 657 721
LMPDE .804 .801 .801 761 .765 .753 .760 .770
T2 .800 .804 .810 .784 .800 .798 802 .813
Cauchy .851 782 779 742 754 .750 694 .750
KS 799 767 778 732 746 742 .783 775
Under Cauchy distributions
NS .641 573 536 .508 .487 475 .601 520
Wilcoxon 644 .664 .636 622 610 .609 .705 .643
Median 615 734 678 .705 715 724 656 71
LMPDE 657 774 .762 .763 .758 .755 .758 .756
T2 650 .765 .754 760 .760 .764 .800 781
Cauchy .801 .805 .801 .807 .809 .813 775 .810
KS .735 .760 750 725 716 714 .800 751
Under Slash distributions
NS 642 592 579 560 .549 544 .600 592
Wilcoxon 645 677 675 669 .666 670 697 .707
Median .608 729 .682 696 .701 .707 .631 .720
LMPDE 658 775 777 763 749 741 632 .767
T2 651 .770 779 .784 .788 794 .780 815
Cauchy .795 799 .805 797 794 797 .736 .807
KS 729 .753 759 729 721 722 .758 .767

2. The Wilcoxon (W) test with scores an (i) = i. This
test is optimal for data from the logistic distribution.

3. The locally most powerful rank test for the double
exponential distribution (LMPDE) with scores an (i) = 2 *
Pr(B < i~ 1) — 1, where B is a binomial variable with
parameters NV and .5.

4. The asymptotically most powerful rank test (AMPRT)
for the ¢, distribution (T2) with scores a (3) = v/30(i/(N +
1) - 5)y/1—4G/(N +1) - ).

5. The Cauchy scores test (C) (Capon 1961) with scores
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an () = 2tanw(i/(N +1) - .5)/(1+tanx(i/(N +1) — .5)).

6. The Kolmogorov-Smirnov test (KS), which is the max-
imum of the absolute difference between the empirical cdfs
of the two samples.

The KS test was shown to be asymptotically optimal for
data from a double exponential distribution (Capon 1965).
Indeed, Rubin and Sethuraman (1965) showed that for the
two-sample shift problem the KS test generally has the
same asymptotic relative efficiency as the median test. See
Nikitin (1995) for a comprehensive treatment of asymptotic
efficiencies of nonparametric tests.




3. POWER SIMULATIONS

The small sample behavior of the six rank tests (NS, W, -

median, LMPDE, T2, C) and KS test were investigated.
Power simulations were conducted for six balanced sample
size settings: n = m = 5,9, 13,25, 50, 100, where the data
were generated from one of the following family of distri-
butions: (1) Normal, (2) Logistic, (3) Double exponential,
(4) ta, (5) Cauchy, and (6) Slash (Morgenthaler and Tukey
1991). We used exact two-sided .05 critical regions, and
randomized critical regions when the closest p value was
more than .001 from the required critical value. The power
estimates were based on 1,000,000 replications. The empir-
ical estimates of the power against a shift, 4, for each of
the six underlying densities are given in Table 1. The value,
8, of the shift parameter was set so that the power of the
optimal test for each distribution was near .80.

Not surprisingly, the locally optimal tests (NS, W, LM-
PDE) had the highest power for all sample sizes for the
distributions they were designed for. The AMPRT for data
from a ¢, distribution (Gastwirth 1970) had the highest
power for that distribution once sample sizes in each group
were at least 9. On data from a double exponential distribu-
tion, however, the median test had substantially less power
than the Wilcoxon for samples below or equal 25, and usu-
ally had less power than the KS procedure. Moreover, it
had less power than the T2 for all sample sizes. Only when
group sample sizes equaled 100 were the powers of me-
dian and T2 tests indistinguishable. These results indicate
that, unlike other AMPRTs, the median test requires quite
large samples before its asymptotic optimality properties
are realized.

The results for the sample size n = m = 25 across all
distributions were typical of the balanced setting so only
they will be discussed. For normal data the median test had
lower power (by at least .08) than W, T2, LNPDE, and KS
procedures. The situation is similar for logistic data. For
data from the heavier tailed Cauchy or slash distributions
the median test did have more power than the NS and W
(for sample sizes 9 and higher) but the LMPDE, T2, and
KS tests were superior to it. Thus, in virtually all settings
the LMPDE, T2, and KS had higher power than the median
test, with T2 having the best overall performance. As the
comparatively low power of the median test in small unbal-
anced samples was shown by Gastwirth and Wang (1987)
we explored larger samples. The case n = 75, m = 25 was
typical and the results in the last column of Table 1 indicate
that the conclusions from the balanced setting apply to the
unbalanced one. It should be noted that while the results
in Table 1 are given for values of the shift parameter, 6,
corresponding to approximately 80% power of the optimal
tests, the same pattern generally holds for other choices of
6. An interesting issue, raised by a reviewer, is the behavior
of the tests under asymmetric distributions. A small simu-
lation study (available from authors) indicated that the W,
T2, and KS procedures continue to generally have higher

power than the median test under a variety of asymmetric
distributions.

There are two approaches to obtaining a single test when
data come from one of a finite set of distributions. The max-
imin efficiency robust test (MERT) due to Gastwirth (1966)
and the maximum of the standardized normal versions of
the optimal statistics (MX) (Tarone 1981; Fleming and Har-
rington 1991). For comparison purposes the performance of
these robust tests for data from the normal, logistic, dou-
ble exponential, and Cauchy family was evaluated. They
had slightly more power than T2 for normal data, however,
for the other distributions considered the powers of these
three tests were similar. If one was less concerned about
very heavy tailed distributions, for example, one could re-
strict the possible underlying densities to the normal, logis-
tic, and double exponential distributions, then the Wilcoxon
test was nearly as power robust as the MERT and the MX.

4. CONCLUSION

Although the median test is easy to explain its compara-
tively low power for normal data without a substantial com-
pensating gain on data from the heavier tailed distributions
indicates that it should not be recommended for routine use.
Of the test statistics examined here, the T2 test performed
well and can be used with software allowing user to specify
the scores (e.g., StatXact). If one is restricted to the stan-
dard tests in a typical software package, the KS procedure
is usually superior to the median test across the set of mod-
els considered. If one felt that the data could not come from
a Cauchy or slash distribution, the Wilcoxon test should be
used.

This article has considered the usual two-sample problem
where the distributions F(z) and G(y) may differ only in
their locations. The levels of all rank tests, including the
Wilcoxon (Wetherill 1960) and the median test (Pratt 1964)
are somewhat affected when the scale parameters (o5, o¢)
of F() and G() differ. When the ratio oz/o¢g is notice-
ably different from 1, one should consider rank tests for
the Behrens-Fisher problem (Hettmansperger and McKean
1998). In particular, Fligner and Policello (1981) modified
the Wilcoxon test which should suffice for general use. In
special situations, where differences in the scale parameters
are quite large, the modification of the median test due to
Fligner and Rust (1982) may be useful. For most purposes,
however, the low power of the median test in conjunction
with the existence of sound alternative procedures indicates
that basic texts and computer packages could relegate it to
a footnote in the future.
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