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Abstract
In 1972, Haseman and Elston proposed a pioneering
regression method for mapping quantitative trait loci
using randomly selected sib pairs. Recently, the statisti-
cal power of their method was shown to be increased
when extremely discordant sib pairs are ascertained.
While the precise genetic model may not be known, prior
information that constrains IBD probabilities is often
available. We investigate properties of tests that are
robust against model uncertainty and show that the
power gain from further constraining IBD probabilities is
marginal. The additional linkage information contained
in the trait values can be incorporated by combining the
Haseman-Elston regression method and a robust allele
sharing test.

Copyright © 2003 S. Karger AG, Basel

Introduction

Haseman and Elston [1] proposed a regression ap-
proach for mapping quantitative trait loci (QTL) using
randomly selected sib pairs. They regressed the squared

difference of sib pair trait values on the estimated identi-
cal-by-descent (IBD) proportions of the sib pairs. Their
method has been extended in many directions [2–9].
Sham et al. [10] developed a promising new approach that
regresses the IBD sharing on the quantitative trait value.
For a comprehensive review of the recent developments
see Feingold [11].

Carey and Williamson [12], Eaves and Meyer [13] and
Risch and Zhang [14] found that the power of testing link-
age for a QTL is increased, when sib pairs with extreme
trait values are used in place of the randomly selected
pairs used in the original Haseman-Elston procedure.
These sib pairs are called extreme discordant sib pairs
(EDSP). To test whether a marker is linked to the QTL
one can derive a score statistic or likelihood ratio test
(LRT) using the proportion of alleles shared IBD by
EDSP. Adapting the approach of Risch [15] and Holman
[16], Knapp [17] found that, under some assumptions, the
probabilities for the numbers of alleles IBD shared by
EDSP are constrained to a triangle, and obtained a
restricted likelihood test (RLRT) for linkage for QTL.
Both the LRT and RLRT are efficiency-robust, i.e., they
have good power properties over a family of plausible
genetic models. In general, the RLRT is more powerful
than LRT.

In this paper we consider a further refinement of con-
straints for the IBD probabilities and use efficiency ro-
bustness methods to derive several statistics that have
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Fig. 1. Restricted probabilities for EDSP.

high power when the underlying genetic model is not pre-
cisely known. The power of these statistics can be further
improved by combining them with the Haseman-Elston
method as suggested by Forrest and Feingold [7].

Model and Notation

Following Hanseman and Elston [1], consider a QTL
with two alleles B and b with population frequency p and
q = 1 – p, respectively. For each individual, it is assumed
that traits follow a linear model Xij = Ì + gij + eij (i = 1, 2
and j = 1, ..., n), where (X1j, X2j ) are the bivariate traits for
the jth sib pair, Ì is the overall mean, gij is the genetic
effect, and eij is the error term. As noted in Feingold [18],
these residual errors incorporate polygenic, nongenetic
familial as well as environmental effects, and are assumed
to have a bivariate normal distribution with mean 0 and
common variance. Define gij = a if genotype of the ith
member of the jth pair at QTL is BB, d if it is Bb, and –a if
it is bb. A genetic model is recessive if d = –a, dominant if
d = a, and additive if d = 0. We also assume there is no
overdominance, i.e., a ̂  d ̂  –a or –a ̂  d ̂  a. Since the
genetic effect is determined by the number of B alleles,

denote Ì0 = Ì – a, Ì1 = Ì + d, and Ì2 = Ì + a. Let f(u, v) be
the bivariate normal density function for the error term
(e1j, e2j ) for the jth sib pair. The correlation, Ú, between e1j

and e2j is called residual correlation. The conditional den-
sity function for (X1j, X2j ) can be written as f(x1j – Ìk, x2j –
Ìm), given that the first sib has k = 0, 1, 2 B alleles and the
second sib has m = 0, 1, 2 B alleles.

Triangles for IBD Probabilties for EDSP

Consider a pt/pb discordant sib pair such that one sib’s
trait value is 6 upper ptth percentile of the distribution of
the trait and the other sib’s trait is ^ lower pbth percen-
tile. The population distribution function of the trait can
be written as [Knapp, 17]

F (x ) = 
x

�
–∞

�p 2h (u – Ì2 ) + 2pqh (u – Ì1 ) + q 2h (u – Ì0 )� du,

where h(u) = � f(u, v)dv is the marginal distribution.
Denote by skm, 0 ̂  k, m ̂  2, the conditional probabil-

ity of a pt /pb discordant sib pair, given one has k alleles B
and the other has m alleles B. Then, following Risch and
Zhang [14] and Knapp [17], the probability that a pt/pb

discordant sib pair shares i = 0, 1, 2 alleles IBD is given
by

zi = pr(IBD = i Apt /pb ) = Di/
2

™
J = 0

Dj,

where

D0 = 
p4s22 + 4p 3qs21 + 2p 2q 2s20 + 4p 2q 2s11 +4pq 3s10 + q 4s00

4
, (1)

D1 = 
p3s22 +2p2qs21 + pqs11 +2pq 2s10 + q 3s00

2
, (2)

D2 = 
p2s22 +2pqs11 + q 2s00

4
, (3)

and

skm = 
∞

�
t – Ìk

b – Ìm

�
–∞

f (u, v )dvdu + 
∞

�
t – Ìm

b – Ìk

�
–∞

f (u, v )dvdu. (4)

Given pt/pb sib pairs, one tests H0: (z0, z1, z2) = (1/4, 1/2,
1/4) vs. Ha: (z0, z1, z2) 0 (1/4, 1/2, 1/4).

When there is no overdominance, Knapp [17] showed
that, for a recombination fraction 0 ^   ^ 1/2, the IBD
probabilities z0 and z1 satisfy 2z2 ^ z1 and z1 ^ 2z0. That
is, in the (z0, z1) plane, the IBD probabilities for EDSP are
constrained to a small triangle ACD (fig. 1), defined by z1

^ 2z0, z1 6 2(1 – z0)/3 and z0 + z1 ^ 1, where the null
IBD probabilities are on vertex A of the triangle.
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For a recessive model (Ì1 = Ì0), Knapp [17] showed
that 2s10 – s11 – s00 = 0 and s20 + s11 – s21 – s10 = 0. Thus,
from (1), (2) and (3), D1 – 2D2 = p2q(2s21 – s22 – s11)/2 and
2D0 – D1 = p3q(2s21 – s22– s11)/2, which imply 2D0 – D1 =
p(D1 –2D2), i.e.,

z1 = 
2q

3p + 1
z0 + 

2p
3p + 1

. (5)

Equation (5) relates z0 and z1 for recessive model when
the allele frequency p is known. When p → 0, (5) goes to
z1 = 2z0, which is AC, and when p → 1, (5) goes to z1 = 1/2,
which is AE. However, for any 0 ! p ! 1, when the
underlying genetic model is recessive or dominant, it can
be shown that the IBD probabilities, z1 and z0, are
restricted to the triangle ACE (Appendix A). Hence, AC
corresponds to a rare recessive and AE to a rare dominant.
The additive model is not necessarily restricted to the
triangle ACE. For case of a rare allele (p ! 0.1) and low
residual correlation numerical results indicate that the
IBD probabilities (z0, z1) are almost always constrained to
the triangle ACE. When the residual correlation is greater
than 0.3 or when p 1 0.1, (z0, z1) may only belong to the
triangle ACD. Thus, in some common settings, it can be
assumed that (z0, z1) are constrained to the triangle ACE.

Test Statistics

We discuss three statistics for testing whether a gene is
the QTL using EDSPs. The first one is RLRT for the
triangle ACE. Let ni, i = 0, 1, 2, be the numbers of EDSP
that share i alleles IBD and n = n0 + n1 + n2. The likeli-
hood function is proportional to L(z0, z1) = z0

n0z1
n1z2

n2 =
z0

n0z1
n1(1 – z0 – z1)n2. For (z0, z1) constrained in the triangle

ACE, one tests H0: (z0, z1) = (1/4, 1/2) against H1: (z0, z1) D
¢ACE and (z0, z1) 0 (1/4, 1/2). The RLRT can be written
as

T ACE
RLRT = 2 log � max(z0, z1) D ¢ACE L (z0, z1)

L (1/4, 1/2)
� .

In contrast, the RLRT of Knapp [17], TACD
RLRT, tests H0:

(z0, z1) = (1/4, 1/2) against H1: (z0, z1) D ¢ACD and (z0, z1)
0 (1/4, 1/2). To apply TACE

RLRT, first, we find the restricted
maximum likelihood estimators of (z0, z1), given in Ap-
pendix B. Then, applying Self and Liang [19] (Appendix
C), we show that the asymptotic distribution of TACE

RLRT
under the null hypothesis is a mixture of ̄ 2 distributions,

Ê

2
¯2

2 + 
1
2

¯2
1 + (

1
2

– 
Ê

2
)¯2

0,

where ̄ i
2 is ¯2 distribution with i degrees of freedom (¯2

0 =
0 with probability 1) and Ê = cos–1(61/2/3) " 0.1959.
Thus, the mixing probabilities for ¯2

2, ¯
2
1 and ¯2

0 are 0.098,
0.50 and 0.402, respectively. The asymptotic distribution
of TACD

RLRT given in [17] is

Ê1

2
¯2

2 + 
1
2

¯2
1 + (

1
2

– 
Ê1

2
)¯2

0,

where Ê1 = cos–1(1/3) " 0.3918, so the mixing probabili-
ties are 0.1959, 0.50 and 0.3041, respectively.

Our second statistic is a restricted score statistic. As in
Whittemore and Tu [20], we reparameterize the triangle
ACD. Let G = (a, 1 – a ) be a point on the boundary CD of
the triangle ACD such that the true IBD probabilities (z0,
z1) are on AG, where 1/3 ^ a ^ 1. In this setting, IBD
probabilities can be written as (z0, z1) = r(1/4, 1/2) + (1 – r)
(a, 1 – a) = (r/4 + a(1 – r), r/2 + (1 – a)(1 – r)) for 0 ̂  r ̂  1.
The null hypothesis is equivalent to H0: r = 0, where a is a
parameter that may depend on the genetic model, e.g., a =
1/3 for a rare recessive while a = 1/2 for a rare dominant
model. For a fixed a D �1/3, 1�, the score statistic is given
by

Ta = 
	 F
Fr

log L (z0, z1)

r = 0

�–E 	 F2

Fr 2
log L (z0, z1)


r = 0
� 1/2

= 
n1/2 � (n0/n )(4a – 1) – (n1/n )(2a – 1) – (n2 /n )�

(6a 2 –4a + 1)1/2
. (6)

Note that, when the IBD probabilities are not restricted to
ACD, ni /n is the maximum likelihood estimator for zi,
i = 0, 1, 2. We modify (6) by replacing ni /n by the restrict-
ed maximum likelihood estimator ẑi for i = 0, 1, 2,
which yields the restricted score statistic, Ta

ACD =
n1/2�ẑ0(4a – 1) – ẑ1(2a – 1) – ẑ2�/(6a2 – 4a + 1)1/2, where
a D �1/3, 1� and ẑ0, ẑ1, ẑ2 are given in Appendix B. The
restricted score statistic for the smaller triangle ACE,
Ta

ACE, has the same expression as Ta
ACD but the nuisance

parameter a ranges from 1/3 to 1/2.
As the score and restricted score statistics are functions

of the parameter a when the underlying model generating
data is unknown, they cannot be used as a is not known.
Statistics based on efficiency robustness concept have
been developed for this situation [21–25]. The first one is
the maximin efficiency robust test (MERT) in the class of
linear combinations of �Ta : 1/3 ̂  a ̂  1�. For the triangle
ACD it can be shown that the MERT for this family is
T1/2. When the genetic model is in ACE the score statistics
are �Ta: 1/3 ^ a ^ 1/2�, the MERT = (T1/3 + T1/2)/
�2(1 + Ú)�1/2, Ú = 61/2/3 " 0.816. The second statistic for the
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Table 1. Empirical power for optimal, restricted and robust statistics allele frequency p = 0.01, sample size 800 based on 10,000 replications

IBD prob. space Tests Genetic model/ascertainment percentages (pt /pb )

recessive

10/10 0.1/10 0.05/10

additive

10/10 10/30 1/30

dominant

10/10 10/30 1/30

Unrestricted T1/3 0.049 0.049 0.390 0.202 0.197 0.548 0.382 0.382 0.974
T1/2 0.050 0.052 0.289 0.300 0.291 0.725 0.535 0.535 0.995
T1 0.044 0.043 0.088 0.209 0.205 0.536 0.374 0.374 0.955
MAX 0.047 0.047 0.317 0.249 0.241 0.632 0.457 0.457 0.988

ACD T 1/3
ACD 0.048 0.060 0.520 0.311 0.305 0.675 0.512 0.512 0.989

T 1/2
ACD 0.052 0.061 0.438 0.399 0.390 0.807 0.640 0.640 0.998

T 1
ACD 0.047 0.051 0.145 0.304 0.297 0.660 0.501 0.501 0.977

MAX 0.050 0.059 0.445 0.378 0.369 0.780 0.608 0.608 0.997
T ACD

RLRT 0.050 0.060 0.448 0.379 0.370 0.780 0.610 0.610 0.997

ACE T 1/3
ACE 0.046 0.058 0.508 0.346 0.338 0.743 0.575 0.575 0.996

T 1/2
ACE 0.051 0.061 0.461 0.397 0.388 0.810 0.643 0.643 0.998

MERT 0.052 0.065 0.513 0.392 0.383 0.798 0.628 0.628 0.998
MAX 0.051 0.064 0.505 0.391 0.383 0.798 0.629 0.629 0.998
T ACE

RLRT 0.050 0.062 0.502 0.384 0.374 0.789 0.618 0.618 0.998

Recessive model 10/10 Ì0 = –2, Ì1 = –2, Ì2 = 2, z0 = 0.250, z1 = 0.500, z2 = 0.250.
Recessive model 0.1/10 Ì0 = –2, Ì1 = –2, Ì2 = 2, z0 = 0.251, z1 = 0.501, z2 = 0.248.
Recessive model 0.05/10 Ì0 = –2, Ì1 = –2, Ì2 = 2, z0 = 0.258, z1 = 0.517, z2 = 0.224.
Additive model 10/10 Ì0 = –2, Ì1 = 0, Ì2 = 2, z0 = 0.267, z1 = 0.500, z2 = 0.232.
Additive model 10/30 Ì0 = –2, Ì1 = 0, Ì2 = 2, z0 = 0.267, z1 = 0.500, z2 = 0.232.
Additive model 1/30 Ì0 = –2, Ì1 = 0, Ì2 = 2, z0 = 0.282, z1 = 0.500, z2 = 0.218.
Dominant model 10/10 Ì0 = –2, Ì1 = 2, Ì2 = 2, z0 = 0.275, z1 = 0.500, z2 = 0.224.
Dominant model 10/30 Ì0 = –2, Ì1 = 2, Ì2 = 2, z0 = 0.275, z1 = 0.500, z2 = 0.224.
Dominant model 1/30 Ì0 = –2, Ì1 = 2, Ì2 = 2, z0 = 0.308, z1 = 0.500, z2 = 0.192.
Trinomial probabilities z were obtained using results from Knapp [17].

family �Ta : 1/3 ^ a ^ 1� is MAX = max(T1/3, T1). When
the null correlation between two extreme statistics is low
to moderate, e.g., Ú ^ 0.75, then MAX is more powerful
than MERT, and when Ú 6 0.75, MERT and MAX have
similar power [23].

Applying MERT and MAX to restricted IBD probabil-
ities (z0, z1), we replace the extreme pair (T1/3, T1) for the
triangle ACD and (T1/3, T1/2) for the triangle ACE in
MERT and MAX by (T1/3

ACD, T1
ACD) and T1/3

ACE, T1/2
ACE),

respectively. Note that even when p 1 0.1, and Ú 1 0.3, the
region where (z0, z1) may not be restricted to ACE, the
proposed tests are still valid.

Power Comparison

To evaluate the power characteristics of the new tests
under the common genetic models (recessive, additive
and dominant) we conducted a simulation study of the

candidate gene case for a range of population parameters
and ascertainment methods. The simulations were per-
formed as follows: first, for a given allele frequency p and
ascertainment parameters pt/pb IBD probabilities z0, z1

and z2 were calculated as in Knapp [17]. The numbers of
0, 1 and 2 sibs IBD were generated from the trinomial
distribution with parameters z0, z1 and z2 and sample size
800. This corresponds to an ascertainment where sib pairs
are sampled and phenotyped until 800 extremely discor-
dant pairs are selected. All tests use 0.05 two-sided signifi-
cance level. Critical values for the restricted tests were
obtained empirically under the null distribution of IBD
probabilities. For TACE

RLRT the empirical critical values were
quite close to the theoretical asymptotic values given in
the previous section (within 3%). A SAS IML program to
implement the proposed tests is available from the first
author.

Table 1 presents empirical power estimates for allele
frequency p = 0.01. Note that for rare alleles under a reces-
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Table 2. Empirical power for optimal, restricted and robust statistics allele frequency p = 0.1, sample size 800 based on 10,000 replications

IBD prob. space Tests Genetic model/ascertainment percentages (pt /pb )

recessive

10/10 5/10 2.5/10

additive

10/10 10/30 1/30

dominant

10/10 10/30 1/30

Unrestricted T1/3 0.183 0.607 0.999 0.331 0.183 0.550 0.675 0.540 0.978
T1/2 0.156 0.494 0.993 0.484 0.274 0.742 0.824 0.692 0.995
T1 0.072 0.155 0.532 0.342 0.196 0.566 0.613 0.488 0.943
MAX 0.153 0.536 0.999 0.403 0.227 0.649 0.745 0.602 0.988

ACD T 1/3
ACD 0.289 0.729 0.999 0.461 0.287 0.678 0.782 0.668 0.991

T 1/2
ACD 0.254 0.660 0.999 0.583 0.372 0.821 0.886 0.784 0.998

T 1
ACD 0.120 0.238 0.779 0.461 0.228 0.685 0.730 0.614 0.971

MAX 0.246 0.663 0.999 0.559 0.352 0.797 0.863 0.752 0.997
T ACD

RLRT 0.247 0.666 0.999 0.561 0.352 0.798 0.863 0.751 0.997

ACE T 1/3
ACE 0.278 0.714 0.999 0.516 0.318 0.752 0.843 0.724 0.997

T 1/2
ACE 0.266 0.678 0.999 0.589 0.370 0.824 0.888 0.788 0.998

MERT 0.293 0.724 0.999 0.577 0.364 0.808 0.881 0.779 0.998
MAX 0.288 0.717 0.999 0.576 0.363 0.809 0.881 0.777 0.998
T ACE

RLRT 0.288 0.715 0.999 0.568 0.355 0.802 0.876 0.769 0.998

Recessive model 10/10 Ì0 = –2, Ì1 = –2, Ì2 = 2, z0 = 0.257, z1 = 0.510, z2 = 0.233.
Recessive model 5/10 Ì0 = –2, Ì1 = –2, Ì2 = 2, z0 = 0.264, z1 = 0.520, z2 = 0.216.
Recessive model 2.5/10 Ì0 = –2, Ì1 = –2, Ì2 = 2, z0 = 0.281, z1 = 0.544, z2 = 0.174.
Additive model 10/10 Ì0 = –0.6, Ì1 = 0, Ì2 = 0.6, z0 = 0.274, z1 = 0.500, z2 = 0.226.
Additive model 10/30 Ì0 = –0.6, Ì1 = 0, Ì2 = 0.6, z0 = 0.267, z1 = 0.500, z2 = 0.233.
Additive model 1/30 Ì0 = –0.6, Ì1 = 0, Ì2 = 0.6, z0 = 0.283, z1 = 0.500, z2 = 0.218.
Dominant model 10/10 Ì0 = –0.4, Ì1 = 0.4, Ì2 = 0.4, z0 = 0.285, z1 = 0.502, z2 = 0.213.
Dominant model 10/30 Ì0 = –0.4, Ì1 = 0.4, Ì2 = 0.4, z0 = 0.280, z1 = 0.502, z2 = 0.218.
Dominant model 1/30 Ì0 = –0.4, Ì1 = 0.4, Ì2 = 0.4, z0 = 0.288, z1 = 0.502, z2 = 0.209.
Trinomial probabilities z were obtained using results from Knapp [17].

sive model the power of EDSP tests is very sensitive to the
ascertainment parameters pt. This happens because ho-
mozygous genotypes are rare (0.01% for p = 0.01) and an
upper ascertainment fraction, pt, close to p2 has to be used
to achieve meaningful power. Table 1 indicates that
among tests restricted to triangle ACD two robust tests
MAX and T1/2

ACD (MERT) along with the TACD
RLRT offer con-

siderable improvement in power over the unrestricted
tests across the three genetic models. The power gain from
further restriction of the sample space is modest, with two
robust tests (MERT and MAX) having power at least as
high as that of TACD

RLRT under additive and dominant mod-
els and a marginal improvement under a recessive model.
The results are similar for p = 0.1 and p = 0.3 (table 2
and 3, respectively) and when residual correlation is
present (results not shown).

Recently several approaches for optimizing the power
of QTL tests have been proposed. To incorporate the
additional linkage information contained in the observed

trait values Forest and Feingold [7] combined allele shar-
ing and regression approaches using a linear combination
of the EDSP and the Haseman-Elston statistics. To inves-
tigate the power characteristics of this combination statis-
tic under the three genetic models and different ascertain-
ment strategies a simulation study was conducted. We
considered statistic, TFFM = ˆ1MERTACE + ˆ2ßHE, a
linear combination of the MERT (restricted to triangle
ACE) and the ßHE, the Haseman-Elston regression slope
estimate, with weights (ˆ1, ̂ 2) = (0.256, 0.969) as suggest-
ed in [7]. Each replication in the simulation was per-
formed by repeating the following steps until the required
number (800) of EDSPs with the specified degree of dis-
cordancy was ascertained: (1) parental genotypes were
generated assuming Hardy-Weinberg equilibrium and
random mating; (2) from the parental genotypes two sib
genotypes were generated, and (3) conditionally on these
sib genotypes (from step 2), sib trait values were generated
according to the bivariate normal distribution model.
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Table 3. Empirical power for optimal, restricted and robust statistics allele frequency p = 0.3, sample size 800 based on 10,000 replications

IBD prob. space Tests Genetic model/ascertainment percentages (pt /pb )

recessive

10/10 10/30 1/30

additive

10/10 10/30 1/30

dominant

10/10 10/30 1/30

Unrestricted T1/3 0.466 0.349 0.940 0.370 0.202 0.450 0.506 0.242 0.446
T1/2 0.447 0.339 0.920 0.534 0.304 0.632 0.604 0.314 0.543
T1 0.192 0.149 0.498 0.383 0.215 0.465 0.371 0.193 328
MAX 0.424 0.315 0.921 0.454 0.253 0.543 0.530 0.266 0.467

ACD T 1/3
ACD 0.594 0.478 0.973 0.500 0.310 0.500 0.635 0.359 0.575

T 1/2
ACD 0.577 0.464 0.965 0.638 0.403 0.729 0.710 0.417 0.651

T 1
ACD 0.282 0.231 0.632 0.510 0.310 0.591 0.498 0.283 0.446

MAX 0.566 0.451 0.965 0.608 0.382 0.696 0.680 0.395 0.621
T ACD

RLRT 0.570 0.453 0.967 0.609 0.383 0.696 0.682 0.399 0.624

ACE T 1/3
ACE 0.595 0.481 0.974 0.566 0.347 0.652 0.670 0.387 0.612

T 1/2
ACE 0.593 0.478 0.970 0.638 0.401 0.730 0.720 0.422 0.662

MERT 0.622 0.501 0.978 0.624 0.394 0.714 0.720 0.428 0.660
MAX 0.616 0.496 0.977 0.624 0.392 0.716 0.715 0.425 0.656
T ACE

RLRT 0.611 0.490 0.976 0.614 0.385 0.708 0.707 0.417 0.648

Recessive model 10/10 Ì0 = –0.45, Ì1 = –0.45, Ì2 = 0.45, z0 = 0.266, z1 = 0.512, z2 = 0.221.
Recessive model 10/30 Ì0 = –0.45, Ì1 = –0.45, Ì2 = 0.45, z0 = 0.264, z1 = 0.510, z2 = 0.225.
Recessive model 1/30 Ì0 = –0.45, Ì1 = –0.45, Ì2 = 0.45, z0 = 0.280, z1 = 0.522, z2 = 0.197.
Additive model 10/10 Ì0 = –0.4, Ì1 = 0, Ì2 = 0.4, z0 = 0.276, z1 = 0.499, z2 = 0.225.
Additive model 10/30 Ì0 = –0.4, Ì1 = 0, Ì2 = 0.4, z0 = 0.268, z1 = 0.500, z2 = 0.232.
Additive model 1/30 Ì0 = –0.4, Ì1 = 0, Ì2 = 0.4, z0 = 0.279, z1 = 0.499, z2 = 0.222.
Dominant model 10/10 Ì0 = –0.27, Ì1 = 0.27, Ì2 = 0.27, z0 = 0.276, z1 = 0.505, z2 = 0.219.
Dominant model 10/30 Ì0 = –0.27, Ì1 = 0.27, Ì2 = 0.27, z0 = 0.266, z1 = 0.503, z2 = 0.230.
Dominant model 1/30 Ì0 = –0.27, Ì1 = 0.27, Ì2 = 0.27, z0 = 0.274, z1 = 0.505, z2 = 0.222.
Trinomial probabilities z were obtained using results from Knapp [17].

Table 4. Empirical power for MERTACE (restricted to triangle ACE ), ßHE and TFFM allele frequency p = 0.1, sample size 800 based on 10,000
replications

Tests Genetic model/ascertainment percentage (pt/pb )

recessive

10/10 25/25 50/50

additive

10/10 25/25 50/50

dominant

10/10 25/25 50/50

MERTACE 0.215 0.122 0.099 0.765 0.722 0.586 0.781 0.675 0.602
ßHE 0.861 0.808 0.805 0.168 0.334 0.702 0.152 0.301 0.740
TFFM 0.487 0.325 0.279 0.819 0.829 0.801 0.820 0.783 0.818

Table 4 presents the simulation results for p = 0.1 and
ascertainment parameter values pt/pb of 10/10, 25/25 and
50/50. Combining Haseman-Elston test with the robust
allele sharing test increased the power of the alleles shar-
ing test in the situations examined. For the dominant and
additive models the gain in power is modest when ex-

tremely discordant (10/10) pairs are ascertained. The
power gain is noticeably greater when moderately discor-
dant pairs are used. When the trait follows a recessive
model, ED sib pairs in which one sib is homozygous (BB)
with a high trait value provide most of the information. In
order to capture linkage information using allele sharing
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methods the proportion of these homozygous individuals
in the upper ascertainment region must be increased. This
requires a large screening sample size. For example, if the
null hypothesis is true the probability of obtaining a sib
pair with one sib in the upper 1% and the other in the
lower 30% is 0.003. Thus, about 66,666 sib pairs would be
screened to obtain 200 EDSPs. The results indicate that
employing a combination statistic should enable one to
maintain a reasonable power while using a somewhat low-
er cut-off value to define an EDSP. Further gain may be
obtained by simultaneous adjustment of the weights (ˆ1,
ˆ2) and the ascertainment parameters pt/pb.

Discussion

The power of tests for linkage using sib pairs is
increased when genetic knowledge constraining their IBD
probabilities is incorporated [16, 17, 19]. The triangle to
which these IBD probabilities are constrained in case of
no over-dominance [17] is smaller for the basic genetic
models when the allele frequency p ! 0.1 and the residual
correlation Ú ! 0.3. The simulations showed that when
these conditions hold the two efficiency robust tests and
the restricted likelihood ratio tests have similar powers
across the models studied. Relative to the tests designed
for the less restrictive assumption of no over-dominance a
nontrivial increase in power is only observed for the reces-
sive model. Thus, if one is unsure whether the additional
restrictions will be satisfied, the TACD

RLRT and robust IBD
sharing tests developed for Knapp’s situation (restricted
to the triangle ACD) should be used, preferably in combi-
nation with the Haseman-Elston regression statistic. This
is especially relevant in situations where the allele is rare
(p ! 0.01) as the sibs with the high trait value need to be in
the extreme tail in order for EDSP-based test to have
meaningful power.
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Appendix

A. Probabilities Constrained to the Triangle ACE
We only need to show, for any recombination fraction 0 ^   ^

1/2, z1 6 1/2. First, let   = 0. Then z1 6 1/2 is equivalent to D1 6 D0
+ D2. Applying (1)–(4),

D1 – (D0 + D2) = 
1
2

p2q 2 �t – Ì1

�
t – Ì2

b – Ì1

�
b – Ì2

dF (u, v ) + 
t – Ì0

�
t – Ì1

b – Ì0

�
b – Ì1

dF (u, v )

– 
t – Ì1

�
t – Ì2

b – Ì0

�
b – Ì1

dF (u, v ) – 
t – Ì0

�
t – Ì1

b – Ì1

�
b – Ì2

dF (u, v )� .

Hence, for the recessive model (Ì0 = Ì1) or dominant model (Ì1 =
Ì2), D1 – (D0 + D2) 6 0. Second, for   1 0, denote zi by zi

 . Knapp [17]
proved that z1

  ^ 2z0
 . Thus, we need to show z1

  6 1/2. Note that z1
  =

2„ (1 – „ )z0 + �„ 2 + (1 – „ )2�z1 +2„ (1 – „ )z2, where „ =   2 + (1 –   )2

and z1 6 1/2. Hence, z1
  = 2„ (1 – „ )z0 + �„ 2 + (1 – „ )2�z1 +

2„ (1 – „ )(1 – z0 – z1) = �„ – (1 – „ )�2z1 +2„ (1 – „ ) 6 (2„ – 1)2/2 +
2„ (1 – „ ) = 1/2, i.e., (z0

 , z1
  ) are constrained to the triangle ACE.

B. Restricted Maximum Likelihood Estimator for the Triangle
ACE
Denote the restricted maximum likelihood estimator (MLE) by

(ẑ0, ẑ1 ). First, find unrestricted MLE. If it is contained in the triangle
ACE, ten it is also the restricted MLE. Otherwise, the restricted MLE
should be on one of the three boundaries of the triangle ACE. The
likelihood function, evaluated at the boundary CE, is 0. Thus, we
only consider the boundaries: AC where z1 = 2z0 and AE where z1 =
1/2. Note that max(z0, z1) DACL (z0, z1) = max1/4 ^ z0 ^ 1/3L (z0, 2z0), from
which ẑ0 = (n0 + n1)/(3n ) and ẑ1 = 2ẑ0 when n0 + n1 6 3n/4 and
(ẑ0, ẑ1) = (1/4, 1/2) when n0 + n1 ^ 3n/4. On the boundary AE,
max(z0, z1) DAEL (z0, z1) = max1/4 ^ z0 ^ 1/2L (z0, 1/2) from which ẑ0 =
n0/(2(n – n1)) when 2n0 + n1 6 n and ẑ0 = 1/4 when 2n0 + n1 ^ n.
Since (ẑ0, ẑ1) maximizes L (z0, z1) on both AC and AE, combining the
results yields

(ẑ0, ẑ1) = 	n0 + n1

3n
, 
2(n0 + n1)

3n

 ,

if n0 + n1 6 3n/4 and 2n0 + n1^ n ;

= (1/4, 1/2), if n0 + n1 ^ 3n/4 and 2n0 + n1 ^ n ;

= 	 n0

2(n – n1)
, 1/2
 , if n0 + n1 ^ 3n/4 and 2n0 + n1 6 n ;

= either 	n0 + n1

3n
, 
2(n0 + n1)

3n

 or 	 n0

2(n – n1)
, 1/2
, (7)

otherwise.

Given the data (n0, n1, n2), evaluating L (z0, z1) at both points in (7)
yields the restricted MLE (ẑ0, ẑ1), the point that maximizes the likeli-
hood function.

C. Asymptotic Null Distribution of RLRT for the Triangle ACE
For testing H0: (z0, z1) = (1/4, 1/2) against H1: (z0, z1) D ¢ACE –

(1/4, 1/2), both parameters of interest (z0, z1) are on the boundary of
the triangle ACE. From case 7 of Self and Liang [19], the asymptotic
distribution of RLRT follows a mixture of ¯2

0, ¯2
1 and ¯2

2 with mixing
probabilities 1/2 – Ê /(2 ), 1/2 and Ê /(2 ), respectively. The factor Ê
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depends on the Fisher information matrix under the null hypothesis,
I = (Iij )2 ! 2, where Iij = –E(F2L (z0, z1)/(FziFzj ) for i, j = 0, 1. These
values are I00 = 8, I01 = 4 and I11 = 6.

Let I = PÏP) be a spectral decomposition of I. Then, by a linear
transformation of IBD probabilities (z0, z1) on boundaries AC and
AE: Ï 1/2P)(AC )) and Ï 1/2P)(AE )), we can apply the result of Self and
Liang to obtain Ê, given by

cosÊ = 
(AC ) I (AE ))

AAÏ 1/2P)(AC )) AA AAÏ 1/2P)(AE )) AA
,

where (AC ) = (1/3, 2/3) – (1/4, 1/2) = (1/12, 1/6) and (AE ) = (1/2, 1/2)
– (1/4, 1/2) = (1/4, 0). Calculations show that (AC ) I (AE )) = I00 /48 +
I01 /24, AAÏ 1/2P)(AC )) AA2 = (I00 +4I11 +4I01)/144, and AAÏ 1/2 P)(AE )) AA2 =
I00/16, yielding cosÊ = 61/2/3.
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