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Summary: Viral load fluctuates during the natural course of asymptomatic HIV-1
infection. It is often assumed that these fluctuations are random around a set point or
underlying growth trend. Using longitudinal data, we tested whether fluctuations in
viral load can be better explained by changes in CD4* T-cell count than by a set point
or trend of exponential growth. The correspondence between viral load and CD4"
T-cell count could be described by a simple mathematical relation. Using a bootstrap-
ping approach, the hypothesis that viral load fluctuations are random around a set point
was rejected with p < .00005. The hypothesis that viral load fluctuations are random
around a trend of exponential growth was rejected with p < .005. Viral load data was
explained better by changes in CD4" T-cell counts than by a set point or by a trend of
exponential growth. The implications of this finding for improved prognostication are
discussed. Key Words: CD4" cell count—Prognosis—Predictive value of tests—

Longitudinal HIV—Viral load.

Polymerase chain reaction (PCR) has proved to be a
powerful technique for the quantitation of plasma viral
load in HIV-1 infection (1,2). It was instrumental in
showing that infection is active—and not latent, as was
long thought—during the asymptomatic period, and to-
day this is the principal method for quantitating plasma
viremia. Measurements are commonly used for diagnos-
tic assessments of disease progression and responsive-
ness to antiviral therapy. As a result, much is known
about both the sensitivity and limitations of PCR assays.
The standard deviation (SD) due to measurement error is
0.18 log,( units for the Amplicor HIV Monitor assay
(Roche Molecular Systems, Branchburg, NJ, U.S.A.)(3).
Fluctuations of variance 0.4 log;, units (standard devia-
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tion [SD], 0.63) are observed over the course of 24 hours
(4), and of variance 0.5 log,, units (SD 0.7) over the
course of 8 weeks (5). It is plausible from these figures
that observed fluctuations in HIV-1 RNA reflect more
than just measurement error.

To date, most longitudinal studies of viral load have
focused on long-term trends, with the goal of explaining
pathogenesis or defining prognostic indicators (6-9);
medium-term fluctuations (i.e., those on the order of a
few years) have received considerably less attention. The
prevailing view is that these fluctuations center around a
set point and contain no information relevant to progno-
sis (6,10,11). Other groups have reported that a set point
is not always a sufficient description, and that fluctua-
tions center around an underlying trend of increasing
viremia (12—14). In either case, if fluctuations in viral
load contain no information, we would expect no relation
between the fluctuations in viral load and the fluctuations
in CD4" cell counts. Here, we test this assumption on
longitudinal data using simple mathematical models. We
find that the CD4" counts are better explained by fluc-
tuations in viral load than by random error around a set
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point or exponential growth of viral load. Fluctuations in
viral load are not independent of the CD4" cell count.

METHODS
Patient Data

Patient data were drawn from a 15-year-long U.S. National Cancer
Institute study of 134 HIV-1-seropositive men as previously reported
(6,12). Serum HIV-1 RNA level, CD4* T-cell count, and clinical and
treatment status were recorded on average once yearly for each patient
as described, except for 1983 when the Washington study subjects were
not observed because of limited resources (12). Serum HIV-1 RNA was
measured using the Amplicor HIV Monitor assay (Roche Molecular
Systems). Because we were concerned with the natural course of in-
fection, measurements following the start of antiviral therapy were
excluded. Moreover, because we fitted parameters to each patient in-
dividually, we included only those patients with five or more measure-
ments for each of viral load and CD4" T-cell count. This reduced the
number of patients to 29, with a bias against rapid progressors. Viral
load measurement and CD4* T-cell count data sets for a given patient
were designated {v,, v,, vs, ... v,,} and {x,, x5, x5, ... x,,}, respectively.

Statistical Analysis

The first null hypothesis is that viral load reaches a set point, and that
fluctuations around this set point are random and independent of the
CD4" cell count. We fit a function f{v) in which viral load was used to
predict CD4" cell count. Many functions f were tried (see Results).
Where no viral load measurement coincided with a CD4* T-cell mea-
surement, viral load was linearly interpolated over time. This interpo-
lation allowed the generation of a set of viral load estimates {v;, v,,
Vi, ... V,r} coincident with CD4* T-cell measurements. We optimized
arbitrary parameters in f by nonlinear least squares (Marquandt) fitting
and calculated the goodness of fit using the least squares criterion
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where ¢;? is the variance for the measurement of viral load for each
time point. We assume that o, is constant for all time points.

Under the first null hypothesis, observed viral load measurements
follow some distribution around a set point. A bootstrapping approach
avoids making assumptions about the nature of the distribution because
it reuses the measurements themselves. If fluctuations in viral load are
random and independent of the CD4" T-cell count, then changing the
order of the measurements should not make any difference to the good-
ness of fit. We simulated the viral load measurements by resampling
with replacements from the observed data set. If the null hypothesis is
true, then these simulated data sets will fit the function f just as well as
the original data set. We produced 10,000 simulations and calculated
what proportion of these gave a better fit than the original data set. This
gives the probability p that as a good a fit as the real data would be
generated by chance alone, given the null hypothesis.

The second null hypothesis is that viral load grows exponentially,
and that fluctuations around this underlying trend are random and in-
dependent of the CD4™ T-cell count. The same procedure was used as
for the first null hypothesis, except that simulated data sets were gen-
erated differently. Viral load measurements were transformed onto a

log scale, and a straight line log v = at + b was fitted. The residual of
each measurement was calculated as r; = log v; — (at; + b). We assume
that the distribution of residuals remains constant on a log scale, that is,
that if the error on a measurement of 10® is + 0.5 log,,, then the error
on a measurement of 10® will also be 0.5 log,,. This assumption is
supported by studies on variation in viral load (3-5). We then simulated
data sets by resampling the residuals r; with replacement to get simu-
lated measurements v, = 1090+,

Following this method, a separate p value was generated for each
patient. Those p values generated for a particular null hypothesis can be
combined by calculating the quantity

29
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Given the null hypothesis, this quantity should be distributed as x> with
58 degrees of freedom (15). This allowed us to combine statistical
information from our 29 patients.

RESULTS

Many functions f were tried, starting with linear func-
tions, progressing to those increasingly nonlinear. Func-
tions using the logarithm of viral load were tried, as well
as functions using untransformed viral load measure-
ments. The best function for two arbitrary parameters
was found to be

Jo) = Uty + o) (2]

Here, v denotes viral load, whereas f(v) denotes CD4*
cell count; y and o are arbitrary constants specific to a
particular patient. This function gave a good estimate of
the CD4" T-cell count from viral load measurements for
many, although not all, of these 29 patients. For 7 of 29
patients, the optimum value of y was 0, that is, the CD4*
T-cell count was predicted to be constant. For these pa-
tients, p = 1.0, providing no evidence against the set
point hypothesis. Other patients showed a good fit; an
example with p = .02 for the first null hypothesis and p
= .08 for the second is shown in Figure 1. Values for o
and v for all patients are shown in Figure 2.

Results for individual patients remain inconclusive,
but when the results from all 29 patients were combined
with a x? test, the null hypothesis of constant viral load
gave p < .00005, whereas the null hypothesis of expo-
nential growth in viral load gave p < .005. In either case,
the null hypothesis is rejected, and the data show that
viral load and CD4™ cell counts are negatively correlated.
In neither case did the low p value of a single patient bias
the results.

We also examined how well Equation 2 fitted data
points taken after treatment and observed that the fit was
maintained in almost all cases, and improved in most.
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The improvement was probably due to the larger number DISCUSSION

of data points and the magnitude of the drop in viral load
on treatment; the greater the biologic fluctuation, the
more easily it can be seen above random noise. A cor-
relation between the extent of viral suppression and the
extent of CD4" T-cell count recovery following treat-
ment has been noted elsewhere (16).

Using a statistical approach, we have shown that viral
load measurements over a period of years are better ex-
plained by cofluctuation with the CD4* T-cell count than
by a set point or trend of exponential growth. This means
that despite the considerable measurement error involved

FIG. 2. Best fit values for the pa-
rameters « and vy in Equation 2 for
all 29 patients. For 7 patients, y =
0, meaning that there is no corre-
lation between fluctuations in
CD4* count and viral load for
those patients. The single outlying
point with a high y value corre-
sponds to a patient whose longi-
tudinal data fit poorly with Equa-
tion 2.
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in quantifying viral load, some observed fluctuations
may be biologically significant. The interaction between
CD4* count and viral load seems to be highly dynamic
during the natural course of infection and does not reach
a single set point.

Although both null hypotheses were rejected for the
patients as a group, they were not rejected for every
patient. This could be entirely due the small number of
data points for each patient, making it easy for random
error to obscure the trend. Alternatively, there may be a
distinct subset of patients whose condition is more stable.
For this subset, measurement errors may be significantly
greater than biologic fluctuations.

The cofluctuation of viral load and CD4" cell count
may be superimposed on other fluctuations. For ex-
ample, CD4" cell counts have been shown to fluctuate
diurnally whereas viral RNA levels do not (4).

A weak inverse correlation between viral load and
CD4* T-cell count is well-known (8,17). In principle, the
relation between viral load and CD4" T-cell count can be
described by various mathematical functions. The one
that gave the best fit to the data was Equation 2, which
was also one of the simplest. This equation has an inter-
esting interpretation. In the standard model of viral dy-
namics (18,19), uninfected cells and viral load are related
by the following differential equation:

dx/dt = N — dx — Bxv [3]

Variables x and v denote uninfected (CD4" T) cells and
viral load, respectively; the constants A, d, and [3 are rates
of uninfected cell production, death, and infection, re-
spectively. The short-term equilibrium of uninfected
cells is given by x* = MN(Bv* + d), where v* is the
short-term equilibrium viral load. We can divide the nu-
merator and denominator by A to obtain a relation of the
form x* = 1/(yv + a) where y = B/\ and o« = d/\.
Because this expression is identical to our best-fit func-
tion, our results may support the applicability of Equa-
tion 3. Alternatively, the relation between Equations 2
and 3 may simply be coincidental. Equation 3 describes
change in the number of uninfected, activated cells,
whereas Equation 2 models the total CD4" T-cell count.
For Equation 2 to support Equation 3, the number of
uninfected, activated cells divided by the total CD4" T-
cell count must be fairly constant. It is not clear whether
this is the case.

In the standard model, viral load also follows a given
differential equation. Here, we treat v as an independent
variable the behavior of which is not predicted, and for
which no steady state is assumed. It seems that v does
indeed fluctuate significantly, and that these fluctuations
are mirrored in the CD4" cell count. This correlation

could reflect a number of processes, such as increased
death of CD4* T cells or increased trapping in the lym-
phoid compartment in response to a rise in viral load.
The relation between CD4" count and viral load under-
scores the importance of viral dynamics in the persis-
tence of HIV-1 infection, although the etiology and bio-
logic significance of the fluctuations remain to be deter-
mined.

Our finding may be used to provide improved prog-
nostication. Previous reports have shown that although
both viral load and CD4" T-cell count have predictive
value for development of disease, viral load was the
more powerful (7-9,20), although CD4* counts gain
value later in the short-term prediction of AIDS or death
(21). Predictive powers of the two indicators have been
shown to be at least partially independent of the other,
that is, after prognosis has been predicted from one in-
dicator, additional information can be gained from the
other (6-8,17). A regression tree using both indicators to
group patients into four or five categories gives a more
accurate prognosis than either indicator used on its own
(9,20). For the best prognostication, we must maximize the
information from both viral load and CD4" T-cell count. In
a regression tree, arbitrary cutoffs divide patients into
groups, and information is lost in the process. A weighted
mean uses all available information and may potentially
provide better prognostication than a regression tree.

Viral load and CD4* T-cell count cannot be combined
in a weighted mean unless they can be transformed onto
comparable scales. The quantitative relation we have
found between viral load and CD4" T-cell count (Equa-
tion 2) provides a possible way of doing so. A continuous
function combining viral load and CD4" T-cell count
may form the basis of a new prognostic measure for
patients using longitudinal data.
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