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The binomial model is widely used in statistical applications.
Usually, the success probability, p, and its associated confidence
interval are estimated from a random sample. Thus, the observa-
tions are independent and identically distributed. Motivated by
a legal case where some grand jurors could serve a second year,
this article shows that when the observations are dependent, even
slightly, the coverage probabilities of the usual confidence in-
tervals can deviate noticeably from their nominal level. Several
modified confidence intervals that incorporate the dependence
structure are proposed and examined. Our results show that the
modified Wilson, Agresti-Coull, and Jeftreys confidence inter-
vals perform well and can be recommended for general use.

KEY WORDS: Coverage probability; Dependent observa-
tions; Expected length of confidence interval; Jury discrimina-
tion.

1. INTRODUCTION

Let X1, Xo. ..., X, bebinomial random variables with com-
mon unknown success probability p. Let n; be the number of
trials foreach X; and N = ny +nz + - +n,. When the X;’s
are independent, Sy = X; + X2 + -+ + X, follows a bino-
mial distribution and most textbooks estimate p by p = ‘—SNA and
use the standard Wald confidence interval: p+2*/p(1 — f)/N,
where z* is the 100(1 — «/2)th percentile of the standard normal
distribution. Tt has been pointed out that the coverage probabil-
ities of the standard Wald interval can be erratically poor even
when p is not near 0 or 1 and alternative confidence intervals
have been suggested. See, for example, Ghosh (1979), Blyth
and Still (1983), Vollset (1993), Agresti and Coull (1998), New-
combe (1998), Santner (1998), and Chernick and Liu (2002).
Brown, Cai, and DasGupta (2001) reviewed the performance of
the standard Wald interval together with several alternatives and
recommended the Wilson or equal-tailed Jeffreys prior interval
for small samples (N < 40), and the Agresti-Coul! interval for
large samples (N > 40). They also provided a theoretical justi-
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fication for their recommendations using asymptotic expansions
of the coverage probabilities and expected length of these con-
fidence intervals (Brown, Cai, and DasGupta 2002).

When the binomial random variables X are dependent, the
distribution of Sy no longer is binomial. The effect of depen-
dence on the sign test was examined by Wolff, Gastwirth, and
Rubin (1967) and Gastwirth and Rubin (1971). Serfling (1968)
showed that the leve] of the two-sample Wilcoxon test was sim-
ilarly increased by positive correlation. Bernoulli trials with
a Markov dependence have been used to model process aris-
ing in rainfall (Klotz 1973), metallurgy (Johnson and Klotz
1974), telecommunications (Crow 1979), meteorology (Katz
1981), and linguistics (Brainerd and Chang 1982). For first-
order Markov dependent Bernoulli trials with p = P(X; = 1)
and A = P(X; = 1|X;_1 = 1), i = 1,2,...,n, Ladd (1975)
provided an algorithm for the confidence interval for the suc-
cess probability p when the dependence parameter A is known.
Crow (1979) and Crow and Miles (1979) studied five approxi-
mate confidence intervals for the success probability p when the
nuisance parameter A is estimated. Bedrick and Aragon (1989)
showed that the best power-divergence confidence intervals for
p improve on those of Crow (1979).

Although the effect of the substantial degree of dependence
arising in time-series and Markov dependent Bernoulli trials has
been studied, there is little literature on the effect of a small de-
gree of dependence on the properties of confidence intervals
for p. Motivated by a legal case where the grand juries in con-
secutive years were dependent, this article studies the effect of
small amount of dependence on the confidence intervals for a
population proportion. It will be seen that all the usual confi-
dence intervals are noticeably affected by the dependence that
occurs only between consecutive observations. Modifications of
the commonly used confidence intervals that incorporate the de-
pendence are developed and studied. Our results show that the
modified Wilson, Agresti-Coull, and Jeffreys confidence inter-
vals have coverage probability close to the nominal level for
most values of p, and their expected lengths are shorter than the
other modified intervals. Hence they can be recommended for
general use.

This article is organized as follows: Section 2 describes the ac-
tual legal case that motivated this research. The usual confidence
intervals for a binomial proportion as well as the modified inter-
vals that incorporate the dependence structure are introduced in
Section 3. Section 4 describes examples of dependent binomial
data. The motivating example is revisited in Section 4, using
the modified confidence intervals constructed in the previous
section. Section 5 compares the coverage probabilities of those
intervals introduced in Section 3. A comparison of expected
lengths of various intervals is provided in Section 6. Section 7
summarizes the results and makes recommendations based on
them.
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2. THE MOTIVATING EXAMPLE

An actual legal case concerning possible discrimination
against blacks in the selection of jurors serving on grand ju-
ries brought the problem to our attention. In many, but not all,
jurisdictions, before an individual accused of a crime is brought
to trial, the government first needs to convince a grand jury that
there is sufficient evidence to justify filing a formal charge of
the crime. The prosecutors do not need to convince the grand
jury that the accused is guilty “beyond a reasonable doubt” as
is required at trial, rather, only the lesser standard of “probable
cause” needs to be shown. If the grand jury agrees that the ev-
idence provided by the state meets this threshold, the accused
is indicted by the grand jury and the trial process initiated. The
composition of grand juries, like trial juries, should reflect the
demographics of the area. In Moultrie v. Martin (4th Cir. 1982,
690 F.2d 1078), the petitioner was arrested in September 1977
for the murder of the county sheriff. A grand jury composed
of 3 blacks and |5 whites returned an indictment against him.
At the subsequent trial, the petitioner moved to quash the in-
dictment on the grounds that he was denied “equal protection”
because blacks were under-represented on the grand jury that in-
dicted him. But the judge allowed the trial to proceed. After his
conviction, the defendant appealed to the federal Court of Ap-
peals for the Fourth Circuit. This court stated that the claim was
based entirely on statistics. Data concerning the demographic
mix of grand juries for the 1971-1977 period was considered
as the court was examining whether the process of selecting
grand juries was fair. Courts recognize that even in a fair sys-
tem, all subgroups of the population may not be represented in
proportion to their fractions of eligible individuals residing in
the relevant area on a particular jury of 12 people or grand jury
of 18.

In South Carolina, where the Moultrie case occurred, grand
juries are chosen from the same master list as trial juries; how-
ever, their length of service is different. Each year, 12 individ-
uals from the master list are chosen at random for service on
the county’s grand jury. For the next year, 6 of those 12 are ran-
domly selected to remain on the grand jury for one additional
year and 12 new people, randomly selected from the master list,
are added. Thus, a total of 18 people serve on the county’s sole
grand jury for each year. Because of this overlap in service of 6
panel members, the racial compositions of grand juries in con-
secutive years are not statistically independent. The actual data
from the Moultrie case is given in Table 1. Note that only the
racial mix of the grand jury for each year was submitted into ev-
idence. More detailed data reporting both the number of blacks
among the 12 new grand jurors chosen from the master list and
the number of blacks among the six “holdover" grand jurors was
not presented.

The above process differs from the usual one in which each
jury or grand jury is an independent random sample from the
eligible population. To describe it precisely, let X; be the number
of black grand jurors in the ith year,i = 1,2,...,n,then Sy =

Table 1. Number of Blacks on Grand Juries of 18 in Colleton County

1971 1972 1973 1974 1977

# of Blacks 1 5 5 7 7 4 3

Year 1974 1976

X1 + ..., X, is total number of black grand jurors in all
years, counting the duplicates. Let p be the true pr()pc)rtison Qf
blacks eligible for grand jury service in the county. The pr«)b]em
of interest is whether the confidence interval for p, constructed
using the data reported in Table 1, contains the true value of the
black proportion of eligible grand jurors. This true value of p is
usually determined from external data, such as the most recent
Census or voter rolls, when they are considered representative.
In the Moultrie case, the court observed that 1977 blacks formed
38% of the voting rolls and accepted 0.38 as the true value of p
for the entire period. Consequently, we are interested in whether
the confidence interval for p contains 0.38 or not.

In the usual situation where there is no overlap between con-
secutive juries or grand juries, the X;’s are independent binomial
random variables with success probability p. Then Sy has a bi-
nomial distribution and the usual confidence intervals for p can
be used. However, Sy in the Moultrie case no longer has a bino-
mial distribution because of the carry-over grand jury selection
process. The appellate opinion actually noted the problem, but
the judges accepted a test of the hypothesis of whether p = 0.38,
using the usual independence assumption as they are not statisti-
cians. Using the fact that X;’s are 1-dependent binomial random
variables, Gastwirth and Miao (2002) showed that the effect of
dependence on the p value of testing p = 0.38 versus p # 0.38
is quite noticeable. For example, the continuity corrected p value
for the period 1972-1977 changed from 0.059 when the depen-
dence is ignored to 0.129 when the dependence is taken into
consideration.

One might try to avoid the complications arising from de-
pendence by restricting the statistical analysis to the individuals
selected each year from the master list. gnoring the grand jurors
carried over for a second year, however, would allow a county to
intentionally discriminate against blacks in the carry over pro-
cess, while appointing the minimal number of blacks in the new
grand jurors needed to “pass” the standard binomial test. This is
a general problem occurring when one is concerned with two-
stage employment practices, as shown in Gastwirth (1997) who
studied methods for assessing the fairness of both hiring and
promotion practices.

3. THE CONFIDENCE INTERVALS

This section reviews the usual confidence intervals for a bi-
nomial proportion p and describes modified intervals that in-
corporate the dependence structure. Let X, ... X, be binomial
random variables with common success probability p. When
the X;’s are independent, the Sy follows a binomial distribu-
tion with parameters N = ny + - - - + n,, and p. When X;’s are
dependent, the corresponding confidence intervals rely on the
structure of the dependence. When Sx has an asymptotic nor-
mal distribution, confidence intervals are created by using the
variance that accounts for the dependence in place of Np(1—p),
the variance of Sy in the independent case. In other words, one
defines N* by N*p(1 — p) = var(Sy), where var(Sy) is the
variance of Sy for the dependent data. A confidence interval ap-
propriate for independent data is then modified for the dependent
setting by replacing N by N*.
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3.1 A Review of Confidence Intervals For Independent
Data

Before proceeding to the dependent case, it is helpful to review
some of the commonly used confidence intervals for indepen-

dentdata.Letp = QT“ and z* be the 100(1 —/2)th percentile of

the standard normal. The standard Wald (Cls), Wilson (Clw),
and Agresti-Coull (Cla ) intervals are:

Cls = p+ 2" ﬁ(1]\7 1")’
and
Clac = 2 p(1 —p)
with
N=N+2z% p= S*‘%:i;;?

with lower (upper) bound equals 0 (1) when Sy = 0 (N)
Notice that the Wilson interval is obtained by solving |p —

p(l 2) for p. The Agresti-Coull interval has the same

pl<z”
simple form as the Wald interval, but it replaces p by p, the
center of the Wilson interval. Following Fleiss (1981), Bohning

(1994), and Newcombe (1998), the continuity corrected Wilson

. - . . . N p(1—p)
interval is obtained by solving |[p — p| — 5% < z H—t for
p, that is,
CICCW

(NP4 1) +27\/2 22 (2F &) +ANp(1 — p) F4p

2(N + 2°2)

with the lower (upper) bound set to be 0 (1) if S; = 0 (N).
Following Brown et al. (2001), the Jeftreys prior interval
(Cl) is:

[B<a/2aSN + 1/27N78N +1/2)7

Bl —a/2,Sv+1/2,N — Sy +1/2]
with lower (upper) bound equals O (1) when Sy = 0 (N) and
B(w; my, m2) denotes the ath quantile of a Beta(m;, mo) dis-

tribution.
The Clopper-Pearson (Cl¢p) exact interval is:

CICP = {B(Q/Q,SN,N — Sy + 1),

B(l-a/2,Sy+1,N — SN)]
with the lower (upper) bound set to be 0 (1) if Sy = 0 (V).

3.2 Confidence Intervals for Dependent Data

Note that F(Sy) = p>.n; = Np and var(Sy) =
Doy var(X) + 237, cov(Xy, X;) = Np(1 —p) + 2p(1 —
P) 2 ic; VG piy = p(L—p)[N +237, . /MiT;pi;), where

ps; is the correlation coefficient between X; and X ;. When { X; }
satisfy conditions ensuring that Sy is asymptotically normal,

126 General

such as m-dependence (Hoeffding and Robbin 1948) or various
mixing conditions (Gastwirth and Rubin 1975; Herrndorf 1984;
Rosenblatt 1984), then

Sy — Np
\/p(l -p) [N +23 \/mpij}
_ p—p
P9 3+ 5 S, vy
B p(f = VO

where N* = [+ + 2= dic /Tittjpiz]) 7. This is precisely the
formula for the asymptotic distribution of p in the independent
case with NV replaced by N*. This relationship suggests the
following modification of the confidence intervals for dependent
data. The modified Wald confidence interval (Clg) is

Mi-5)

Cl¢ = p+ 2~
Ptz N

The modified Wilson interval (CIdW) is obtained by solving

p(l —p)/N* =7

for p, that is,

pN* 1 *2
N* +Z*2

*N*_ .,*2

¢, =
C N* +Z*2 ( p) + o 4AN*

The modified Agresti-Coull interval is obtained by using the
center of the modified Wilson interval and the same form of the
modified Wald interval:

~* * I}*(l —i)*)
with
~ pN*+1 *2
N N* *2 *
» P N* +Z*2

Solving the inequality |[p — p| — 5% < 2*/p(1 — p)/N~ for

p yields the modified continuity corrected WllSOI’l interval:
(2N*p+ 22 + 57
2(N* + z*2)
2"/ 2*2 + AN*p(1 — p) — &5 + 28
2(N* + z*2)

CI((W =

4N*p
N

with lower (upper) bound equals 0 (1) when Sy = 0 (N).

The J effreys (CI ) and the Clopper-Pearson confidence inter-
vals (CIp) for dependent data are also obtained by replacing
N by N* and Sy by pN*. That is,

Cld = [B(a/2,pN* +1/2, N* — pN* +1/2),
B(l - «of2,pN* +1/2, N* — pN* 4+ 1/2]
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Cl{p = [B(a/2.pN*,N* = pN* + 1),
B(1—-a/2,pN* +1,N* — pN™)]
with lower (upper) bound equal to 0 (1) when S = 0 (N).
4. APPLICATIONS TO DEPENDENT DATA

Some examples of dependent binomial data are described in
this section. To illustrate and compare the methods, the modi-
fied confidence intervals are constructed for the data from the
Moultrie case.

4.1 Examples of Dependent Data

I. When the X, ..., X,, are m-dependent, the central limit
theorem for m-dependent random variables (Hoeffding and
Robbin 1948) implies that Sy converges to a normal distribution
and the above formulas apply. In the Moultrie v. Martin case, X
are 1-dependent with n; = 18, p;; = 1/3if | — i = 1 and O
otherwise (Gastwirth and Miao 2002). Consequently, N = 18n

* — 18n)2
and N* = [T;z;+(—182’—1)_2—18(7171)%] t= 3(0717)12’
less than NV as long as n > 1. Indeed, N*/N = 18

30n—12
whenn > 2.

2. Let Y),....Y, be a strictly stationary first-order au-
toregressive process with independent errors, or equivalently,
Yirn = pYi+e€;, i =1,2,... n, where the ¢; are iid random
variables symmetric about 0. Let

>
le:{1)@_0

which is
< 0.7

and p=P(X,=1).

0Y <0,

Then X; are dependent binomial random variables with r; =
land N = n.Let Sy = X; + -+ + Xn. The Sy is the sign
test statistic used to test whether the Y;s have median 0. It has
been shown (Wolff, Gastwirth, and Rubin 1967) that var(Sy) =
Sil v (N = k) i = Np(1=p)+2 4L (N—k) p, where
pr. = cov(Xy, Xy). Thus, if Sy is asymptotically normal, then
p(1-p)N?

var(Sn)

the formulas in Section 3.2 apply with N* =
p(1-p)N? )
Np(1—-p)+2 Z:’ZI(N*k)pk
2(a). In the special case of a first-order Gaussian process
where the Y;’s are standard normals, p = 0.5. Wolif et al. (1967)
proved that var(Sy) = IN + %Z,{,V:l (N — k) arcsin p*
and Sy is asymptotically normal. Consequently, N* =
N2
N4 4 Z:]:I(N-k) arcsin pk

2(b). In the corresponding first-order autoregressive double
exponential process, the Y;’s have double exponential distribu-
tions with mean 0 and variance 2. Wolff et al. (1967) showed that
S is asymptotically normally distributed with E(Sy) = N/2

Table 2. Confidence Intervals for the Moultrie Data

Assuming Incorporating

Confidence interval independence dependence
Standard Wald (0.202,0.372) (0.181,0.393)
Wilson (0.210,0.379) (0.194,0.402)
Agresti-Coull (0.210,0.379) (0.193,0.403)
Continuity Corrected Wilson (0.206,0.383) (0.190,0.407)
Jeffrey (0.208,0.377) (0.191,0.401)
Clopper-Pearson (0.204,0.382) (0.185,0.408)

and var(Sy) = 1 [NLJ_EB _ 200=p7)| n this case, N* =

I=p (1-p)?
MU ¢ irst- ssive
N(=pP)—2p(1=5V7" Note that even for first-order autoregre

process with the same p, the variance of Sy and the N* depend
on the stationary distribution, that is, the sign test is no longer
distribution free.

3. Consider Bernoulli trials with first-order Markov depen-
dence. Klotz (1973) used this model for measurable precipita-
tion in the month of June at Madison, WI. Let X;...., X, be
dependent Bernoulli random variables with P(X; = 1) = p
and P(X;41 = 1|X; = 1) = A, i = 1,2,...,n. Then
n; = land N = n. Let p = (A — p)/(1 — p) be the corre-
lation coefticient between X; and X, ;. Klotz (1973) showe.d
that Sy = X1 + ... Xy is asymptotically normal and the VSrl-
ance of Sy is var(Sy) = p(1 — p)[N + ?—]f‘f - Z—KE(Tl,:,ST)]
Consequently, when the parameter p is known, the N* =
[+ + N(?’ip) - iﬁz((ll_f:;g]_l. Usually one would estimate p
using the estimated p.

4.2 Reanalysis of the Moultrie v. Martin Data

Recall that each year’s grand jury consists of 18 people: 12
are randomly selected from the population and 6 are randomly
selected from the 12 chosen as new grand jurors in the previous
year. Let X; be the number of black grand jurors for the ith
year. Gastwirth and Miao (2002) showed that the correlation
coefficient between X; and X is 1/3 if |j —i| = 1 and 0
otherwise. Because there was only one black grand juror in the
first year, 1971, noticeably less than the data for other years,
the court decided to disregard that year’s data. Considering the
remaining six years, 1972-1977, N = 18 x 6 = 108 while
N* = [t + 15:(6 — 1) * 18 « 4]=! = 69.4. There were
31 black grand jurors (counting duplicates) for the time period
19721977, so Sy = 31. The corresponding 95% confidence
intervals are given in Table 2. For comparative purposes, the
confidence intervals that treat the X,’s as independent binomial
random variables are given in Table 2.

Table 2 clearly indicates that the confidence intervals incorpo-
rating dependence are wider than those that incorrectly assumed
independence. Actually the ratio of the length of modified con-
fidence interval to that of the corresponding independent confi-
dence interval is about 1.25, which is approximately \/W .
More importantly, as 0.38 was accepted as the true black propor-
tion for the entire period, all the modified confidence intervals
include 0.38, while only two of the independent confidence inter-
vals do. They were the continuity corrected Wilson and Clopper-
Pearson intervals, which are known to be conservative (Bro.wn
et al. 2001). The continuity corrected Wald interval (assuming
independence) was (0.180, 0.394), which includes 0.38. This is
consistent with the p value of 0.059 of the test of p = (.38 noted
in Section 2. As a referee pointed out the effect of the depen-
dence, which reduces the effective sample size from N to N*,
is the same for both hypothesis tests and confidence intervals,
preserving the usual correspondence between them.

5. COVERAGE PROBABILITIES
The coverage probability of any of these confidence intervals
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Figure 1. Coverage probability for confidence intervals

is given by:
N
CP = P(peCl)=) P(peClSy =k)- P(Sy = k)
k=0
N
= > I(k.p)P(Sy = k),
k=0
_ 1, if peCl when Sy =k
I(k,p) = { 0, otherwise.

This section examines the coverage probabilities of the con-
fidence intervals for a slightly more generalized model of the
grand jury selection process. Each year let f be the number of
first-time grand jurors randomly selected from the population
(in Moultrie, f = 12). Let ¢ (¢ < f) be the carry-over grand
jurors, selected randomly from the previous jurors (in Moultrie,
¢ = 6). Thus, there are f + ¢ grand jurors each year. Over n
years, there are N = (f + ¢)n grand jurors. Gastwirth and Miao
(2002) showed that the density functionof Sy = X1 +... X, is

min(i, f+c)
P(SN = l) = Z
k=max(0,i—(n—1)(f+ec))
f +c . c)—k
K N O OR
-Ehl+44.+b" 1=i—k ((lbl P ab‘nfl) (1)
128 General
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P

ignoring dependence. (f=12,c=6,n=6, p = 1/3).

with a; = X, 5 (:2%) (szici)pk(l -pith i =
0,,2,...,.f+ec

Equation (1) enables us to calculate the exact coverage prob-
abilities for all the intervals considered here. First, we explore
the effect of ignoring the dependence on the usual confidence
intervals. Gastwirth and Miao (2002) showed that the correla-
tion, p, of black grand jurors in consecutive years is f‘j_—c For
nonconsecutive years, p = (). Notice that p < 0.5 as ¢ < f.

Figure 1 presents the exact coverage probabilities for a nom-
inal 95% confidence interval for each of the six methods de-
scribed in Section 3.1, where the dependence between consec-
utive years is ignored. The graph, as well as those appearing
later in the article, were produced using R software with p from
(0,1) with increments of 0.01. We took n = 6, f = 12 and
¢ = 6 as in the Moultrie case. Then N = 18 x 6 = 108, p = 2,
and N* = 69.4. Clearly all six intervals have coverage prob-
ability much lower than the nominal 0.95 level for most val-
ues of p. These findings confirm the importance of considering
the dependence structure in analyzing data. Similar results were
obtained for the cases n = 6,f = 17,c = 1,p = &, and
n =6,/ =c=9,p= 1 Consistent with the formula of
var(Sy), as the positive p;; increase, the dependence between
the observations increases, /V* decreases and the coverage prob-
abilities of all the confidence intervals ignoring dependence de-
cline.

Figure 2 presents the exact coverage probabilities for the mod-
ified confidence intervals incorporating the dependence structure
when p = 1/3. The modified Wald interval still has coverage

Material may be protected by copyright law (Title 17, U.S. Code)




Modified Wald
[=
S
(=3
o 4
o
8
[=3 T T T T
02 0.4 0.6 0.8
P
Modified CC Wilson

(=3
Q .
f=
&
o
o
o -
=) T T T T T T

0.0 0.2 04 0.6 0.8 1.0

p
Modified Jeffreys
o
[=
T "

&
=]
8
o T T T T T

0.0 0.2 0.4 0.6 0.8 1.0

p

Modified Wilson

[=]
S
Ao, o S A, AED,
[=3
= Jp—
=
[=3
«Q
=1 T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
p
Modified Agresti-Coull
[=3
S
o
o
o
[=]
D -
(=] T T T T T
0.0 0.2 0.4 06 0.8 1.0
p
Modified Clopper-Pearson
ey N\’V\»\/V\W——\_AWN‘/\A
& -
<
f=
@
=] T T T T T
0.0 0.2 04 0.6 0.8 1.0

p

Figure 2. Coverage probability for modified confidence intervals. (f= 12, ¢=6,n= 6, p = 1/3).

probabilities lower than the nominal 0.95 for most values of p,
especially those near 0 or 1. These results are consistent with
those of Brown et al. (2001) in the independent case and use
of that method is not recommended. The modified Wilson and
Jeffreys intervals have coverage probability near the nominal
0.95 for all values of p. The coverage probability for modified
Agresti-Coull interval is close to the nominal 0.95 for most val-
ues of p. Only when p is near 0 or 1, its coverage probabilities
are higher than the nominal 0.95. The modified continuity cor-
rected Wilson and Clopper-Pearson intervals are conservative
with coverage probability higher than 0.95 for all values of p.
These findings agree with those of Brown et al. (2001) in the
case of independent binomial data as can be seen by comparing
Figure 2 with their Figure 5.

The amount of dependence for the grand jury selection process
is relatively small even when p = 1/2, the largest possible value,
as the number of black grand jurors in nonconsecutive years are
independent. To explore a process with a greater degree of de-
pendence, we examined the behavior of the sign test on the first-
order autoregressive Gaussian process in Example 2(a) of Sec-
tion 4, We simulated the process Y; 1 = pYi+e;,0=1,2,...n,
where Y] is a standard normal random variable and the ¢; are iid
N (0,1 — p?). Using the simulated number of Y;’s > 0, we con-
structed 95% confidence intervals forp = P(Y; > 0) = 0.5 and
checked whether these intervals included 0.5. As expected, all
confidence intervals that incorrectly assumed independence had
coverage probabilities far from the nominal 0.95 even for sample
sizes as large as 200. Also, the higher the value of |p|, the fur-

ther the coverage probability differed from 0.95. The modified
confidence intervals performed much better compared to those
that were not modified. However, when n = 50 and p > 0.8,
the modified Wald interval had coverage less than 0.85, while
the continuity corrected Wilson and Clopper-Pearson intervals
had coverage higher than 0.975. The modified Wilson, Agresti-
Coull, and Jeffreys interval performed well when N* is not small
(N* > 10). When N* is small, for example in the case when
n = 30, p = 0.9, N* is only 3.14, the coverage probabilities for
the modified Wilson, Agresti-Coull, and Jeffreys intervals are
equal to 1. This indicates that further research needs to be done
to obtain efficient confidence intervals when there is substantial
dependence among the observations.

6. THE EXPECTED LENGTHS OF CONFIDENCE
INTERVALS THAT INCORPORATE DEPENDENCE

The expected length (W) of a confidence interval is given by
N

EW) =Y (Uk, f.e,n) = L(k, f,¢,n)) P(Sy = k),
k=0

where U and L are the upper and lower bounds of the confidence
intervals. Using the density function of Sy given in (1) and the
lower and upper bounds of each type of confidence interval given
in Section 3, E(W) can be calculated exactly. Here, we consider
only the expected length of the modified Wilson, continuity cor-
rected Wilson, Agresti-Coull, Jeffreys, and Clopper-Pearson in-
tervals which have desirable coverage probabilities when the
dependence effect is included.
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We looked at the expected length of those intervals for N =
108 and p = l—lg, %, and %, respectively. For each type of inter-
val, the greater the dependence, the longer the expected width.
For example, when the true population proportion p = (.38,
the expected lengths for the modified Wilson interval are 0.187,
0.221, and 0.239 for p = ﬁ % and % respectively. This is
not surprising as the variance of p increases with p = fic as
n and (f + ¢) are fixed. For the same degree of dependence,
the expected lengths of the modified Clopper-Pearson and con-
tinuity corrected Wilson intervals are longer than those of the
modified Wilson, Agresti-Coull, and Jeffreys intervals. This is
consistent with the earlier finding that their coverage probabil-
ities are higher than the other three confidence intervals. The
expected lengths for the modified Wilson, Agresti-Coull, and
Jeffreys intervals are about the same.

7. CONCLUSION AND RECOMMENDATION

The degree of dependence arising in the hold-over grand jury
data is far less than that occurring in the typical time series data
as the grand jurors in nonconsecutive years are actually indepen-
dent. Nevertheless, even with a small amount of dependence, the
coverage probabilities of all the usuval confidence intervals were
seen to be far less than the nominal (.95 value in Section 5. Thus,
any confidence interval needs to use the correct variance of Sy
which incorporates the dependence structure of the data. These
results reinforce van Belle’s (2002) observation that ignoring
dependence is a major pitfall in data analysis.

Our results indicate when one has dependent binomial data
with success probability p, the modified Wilson, Agresti-Coull,
and Jeffreys intervals have coverage probability close to the
nominal level for most values of p and their expected lengths
are shorter than the other modified intervals. Hence those inter-
vals can be recommended for dependent data. Further research
is needed to obtain appropriate modified confidence intervals
for processes with long-range dependence (Beran 1994) as well
as random-effects models where X; are independent binomial
with parameters n; and p; and the p; come from a distribution.

[Received January 2003. Revised March 2004.]
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