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SUMMARY. We derive a likelihood score method for interval estimation of the intraclass version of the
kappa coefficient of agreement with binary classification using a general theory of Bartlett (1953, Biometrika
40, 306-317). By exact evaluation, we investigate statistical properties of the score method, the chi-square
goodness-of-fit procedure (Donner and Eliasziw, 1992, Statistics in Medicine 11, 1511-1519; Hale and Fleiss,
1993, Biometrics 49, 523-534), and a crude confidence interval for small and medium sample sizes. Actual
coverage percentages of the score and chi-square methods are satisfactorily close to the nominal confidence
coefficient, while that of the crude method is quite unsatisfactory. The expected length of the score method
is shorter than that of the chi-square procedure when the response rate is very small or very large.

KEey woRrDS: Expected coverage probability; Expected length of interval; Interval estimation; Intraclass
correlation; Kappa coeflicient of agreement; Score method. '

1. Introduction

There are two basic underlying models for assessing the de-
gree of agreement on a binary scale. The first model assumes
the marginal probabilities of positive classification with two
raters are different, and Cohen’s (1960) kappa is based on this
model. The second model assumes the same marginal positive
probability for each rater and leads to the intraclass version
of the kappa, which is identical to Scott’s (1955) index. In
this article, we will limit our attention to evaluation of agree-
ment under the second model, i.e., the reliability of a single
rater based on rating a sample of subjects twice (Hale and
Fleiss, 1993). Recently, Donner and Eliasziw (1992) and Hale
and Fleiss (1993) have independently developed the estima-
tion method using a chi-square goodness-of-fit statistic and
Cornfield’s test-based method, respectively. In this article, we
derive interval estimation that possesses asymptotically opti-
mal statistical properties and compare it with other methods
for small and medium sample sizes by exact evaluation.

2. Model and Notation

Suppose that two comparable raters each rate a sample of n
subjects independently, with ratings denoted by either posi-
tive (4) or negative (—) responses, or a single rater rates a set
of n samples twice with the second evaluation done without
knowledge of the first one. The pairs of ratings are classified
in three categories. With subscripts presenting the number
of positive ratings in a pair, let 5, z1, and zg denote the
observed numbers of n pairs ratings and P», P, and Py the
corresponding probabilities. Let p denote the probability of a
positive response and ¢ = 1—p, i.e., Pr(+) = pand Pr(-) = q.

The kappa coefficient, «, is a measurement of the correlation
between two ratings in a pair (interrater or intrarater reli-
ability). The intraclass cortelation in a pair may be{ defined
as p = (Py — p%)/(pg) = (Po — ¢*)/(pa), so P2 = p* + pap,
Py = q2 +pgp, and P =1 — Po — Py = 2pg(1 — p). The
actual probability of agreement is po = P> + Py and the
probability of agreement by chance is pe = p2 + q2, where
p = P + P1/2. Since the standard definition of kappa is
k = (Po — pe)/(1 — pe) = p, kappa is the same as the in-
traclass correlation.

3. Interval Estimation of Coefficient of Agreement
Consider the distribution of &’ = (3,21, o) under the multi-

nomial model in Section 2. The log likelihood is expressed as

In L = z3 In{p(p+gr)} + 21 In{2pg(1 — x)} + =g In{q(q+pr)},

where ¢ = 1 —p. Kappa, k, is the parameter of interest and p
is a nuisance parameter.

The maximum likelihood estimators (MLEs) of x and p
are & = (4zoxe —7)/{(2z0 + 1) (2z2 + 21)} and p = (222 +
z1)/(2n), respectively. The asymptotic variance of & is

var(R) = (1 — r){(1 — k)(1 — 2x) + &(2 — k)/(2pg)}/n (1)

(cf., Hale and Fleiss, 1993). The estimated variance of & is
obtained by replacing & and p by & and p in (1). The 100 x
(1 — @) percent crude confidence limits of x are found by

£+t Z(lﬁa/z){var(’%)}i/:zﬁ,pzri’ @

where z(;_ /2 is the 100 x (1 — a/2) percentile point of the
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standardized normal distribution. Donner and Eliasziw (1992)
proposed a 100% x (1 — ) confidence interval for x based on
a goodness-of-fit statistic,

2

X& =Y {zi—nPi(k,0)}/{nPi(k,$)} = 252 (3)
=0

where p = (2x2 + 21)/(2n), Po(x,0) = p* + pdr, Pi(x,p) =
264(1 — &), and Py(k,p) = ¢° + pgs, with § = 1 — p. The
confidence limits are two admissible roots of a cubic equa-
tion of x. Hale and Fleiss (1993) presented a Cornfield-type
method. The limits of the interval with a (1 — ) coefficient
are obtained by solving the following equation:

2= {22 — nPQ(,‘-c,ﬁ)}2

1 4 1
X ~ + ~ t+ ~
{TLPO(K/,[)) nP (K'>p) nPQ(K‘ap) }
2
= ¥(a/2)-
The goodness-of-fit and Cornfield’s test-based methods are,
in fact, algebraically the same and will henceforth be referred

as the DE & HF method in this article.
Denote the first-order derivatives of the log likelihood as

dlnL
S’i(ﬁ)p) = 8/4)
1 9 Zo
-k (p+qur q+pk n)
OlnL
Sp(k,p) =
P( p) 8})
_ +xzo — (n+x1)p
Pq
+ {1’2 —zok — (@0 + x2)(1 - K,)p}(l - R) 4)
(p +qx)(q + pr) ’

where ¢ = 1 —p. Using results of Bartlett (1953), the asymp-
totic variance of the score evaluated at p = §, where $ is the
MLE of p for a given value of &, is obtained by

var{Sx(x,p)} = 2npq/[{2pg(1 - ) (1 - 25) + £(2— K) }{1 - K)].

Note that Bartlett’s formulation is essentially similar to that
of Cox and Hinkley (1974). The approximate 1 — « confidence
limits are two solution to the equation

(k. B) = {Sn(r,B)} /var{S (5, 5) p=p = 2{n/2)

( 22 20 _n>2{2;55(1-@(1—2@%(2-@}

——— + —
p+dr  §+Pk 2npd(1 — k)

(5)
= Ho/2)

The MLE, p, is the solution of a cubic equation, Sp(k,5) = 0,
ie.,

aop” + a1p* + agp + a3 =0, (6)

where ag = 2n(1 — k)2, a1 = —{3n(1 — k) + 25 — 20} (1 — k),
as = 2xo+x1 ——2(2n—:ro)f-:+nm2, and a3 = (z1 +z2)k. Only
one root (see Appendix) is appropriate as the MLE of p and
the other two roots (one is negative and the other is greater
than one) are irrelevant. The confidence limits are two solu-
tions that satisfy equation (5) with (A.1). They may be found
iteratively using Newton—Raphson or the secant method.

4. Exact Evaluation

We evaluate exact confidence coefficient for the crude, DE &
HF, and score methods by numerical evaluation of multino-
mial probabilities at all possible sampling points. The method
is similar to the exact evaluation of interval estimation of the
ratio of two binomial parameters (Gart and Nam, 1988). The
exact probabilities of the interval estimation covering kap-
pa is

P=>"Pr(@|n,x,p),

xER

where R is the region of sampling points in which the confi-
dence interval contains . The Pr(z | n, x,p) is the multino-
mial distribution of & defined in Section 2. We calculate ex-
act confidence coefficients for the crude, DE & HF, and score
methods for a wide range of p and x for small and medium
'sample sizes. Table 1 provides typical values of actual cover-
age probabilities of the methods corresponding to a nominal
95% confidence coefficient for n = 20 and 40. The actual co-
efficient of the crude method is noticeably smaller than the
nominal value, particularly for n = 20. The DE & HF method
and the score method yield actual coefficients satisfactorily

Table 1
Actual coverage percentage for nominal 95% confidence interval for k

n =20

n =40

Crude DE & HF

Score Crude

DE & HF Score

30.4 96.7
48.0 97.6
60.5 95.7
58.1 92.0
35.5 92.0

85.2 95.3
88.6 94.9
90.0 94.4
89.1 95.1
57.3 93.9

93.5 51.8 96.4 96.4
95.1 73.0 96.7 95.9
97.0 81.6 93.9 96.0
96.8 82.0 92.8 95.3
92.0 51.3 92.6 94.9
95.3 92.1 94.9 95.3
94.9 92.9 94.4 948
94.5 92.6 94.8 95.0
95.2 91.1 94.4 95.3
93.9 81.7 95.9 95.9
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Table 2
Ezxpected length of nominal 95% confidence interval

n =20 n = 40

P K DE & HF Score DE & HF Score
0.1 0.1 0.725 0.513 0.573 0.446
0.3 0.782 0.656 0.639 0.588
0.5 0.817 0.732 0.661 0.636
0.7 0.829 0.761 0.634 0.607
0.9 0.813 0.751 0.543 0.504
0.3 0.1 0.714 0.706 0.560 0.579
0.3 0.736 0.745 0.572 0.582
0.5 0.714 0.718 0.544 0.546
0.7 0.643 0.637 0.472 0.470
0.9 0.503 0.488 0.332 0.327

close to the nominal one. The discrepancies between the two
methods in the limit may be caused by differences in tail prob-
abilities and also by differences in the efficiency of estimation.
Denoting &; and Ry as lower and upper limits of an interval,
we calculate the expected length of each of two methods by

E()) =) IPx(z | n,,p),

where [ = &y — #; and summation is over all possible sampling

. points. Table 2 shows that the expected length is inversely

related to sample size. The score methad yields a considerably
shorter expected interval length than the DE & HF method
when p = 0.1, while the two methods are hardly different
when p = 0.3. The tables for p = 0.7 and 0.9 are the same as
those in Tables 1 and 2 for p = 0.3 and 0.1, respectively, i.e.,
they are symmetric with respect to p = 0.5,

5. An Example

Twenty pairs of male siblings from black American families
were examined for HIV seropositivity. Two, one, and 17 pairs
were clagsified as both brothers in a pair being positive, only
one being positive, and both being negative, respectively. We
want to assess the intraclass correlation in pairs of siblings.
The point estimate of kappa and its standard error are & =
0.7714 and SE(&) = 0.2193. From (2}, (3), and (5) with (A.1),
the 95% confidence interval for x by the crude, DE & HF,
and score methods are (0.3416, 1.2013), (0.2073, 0.9591), and
(0.2463, 0.9620), respectively. The upper bound of the crude
method is larger than one, and it is beyond the admissible
range of . Since the point estimate of agreement between
two siblings is high and the sample size is small, researchers
may be more concerned with the lower limit of x. The lower
limit for the two-sided 95% confidence interval by the score
method is 19% higher than that by the DE & HF method.

6. Remarks -

Donner and Eliasziw (1992) have advised the use of the DE &
HF method when the expected frequencies are not less than
one. We find the DE & HF method and the score method
give actual coverage frequencies relatively close to the nominal
coefficient even when the minimum of the expected number
of observations is as small as 0.4. Both the DE & HF and the
score methods can always provide admissible limits, while the
crude method may not.

RESUME

Nous dérivons une méthode du score de vraisemblance pour
Pestimation par intervalle de la version intraclasse du coeffi-
cent Kappa de concordance avec une classification binaire en
utilisant une théorie générale de Bartlett (1953, Biometrika
40, 306-317). Par une évaluation exacte, nous étudions les
propriétés statistiques de la méthode du score, la procédure
du Chi2 d’ajustement (Donner and Eliasziw, 1992, Statistics
m Medicine 11, 1511-1519; Hale and Fleiss, 1993, Biomet-
rics 49, 523-534) et un intervalle de confiance approché pour
les échantillons de petite et moyenne taille. Les pourcentages
de couverture actuels des méthodes du score et du chi2 sont
raisonnablement proches de lintervalle de confiance nominal
alors que la méthode approchée est n’est pas vraiment satis-
faisante. La longueur attendue de l'intervalle par la méthode
du score est plus courte que celle du Chi2 quand le taux de
réponse est trés petit ou trés grand.
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APPENDIX

The MLE of the Nuisance Parameter for a
Given Value of Kappa

From (4) and (6), the MLE of p for a given value of &, p, is
obtained by solving the cubic equation app®+a; P tay ptaz =
0, where ap = 2n(1— k)%, a; = —{3n(1 — k) + 32 — 20 }(1 — k),
az = 2z + z1 — 2(2n — zg)K + nk?, and ag = (x1 + z2)k.
Denoting b; = a;/ap, i = 1,2 and 3, ¢; = by — b3/3, and
c2 = by — byba/3 + 2(b1/3)®, the three roots of the above
cubic equation are found with a trigonometric solution. Only
one root is admissible as the MLE of p, i.e.,

B =—2(—c1/3)"? cos(/3 + 0/3) — b1 /3, (A.1)
where cos @ = (27)/%¢y /{2¢1(—c1)'/?}.




