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SuMmMARY. Commonly used methods for depicting geographic variation in cancer rates are based on rank-
ings. They identify where the rates are high and low but do not indicate the magnitude of the rates nor
their variability. Yet such measures of variability may be useful in suggesting which types of cancer warrant
further analytic studies of localized risk factors. We consider a mixed effects model in which the logarithm
of the mean Poisson rate is additive in fixed stratum effects (e.g., age effects) and in logarithms of random
relative risk effects associated with geographic areas. These random effects are assumed to follow a gamma
distribution with unit mean and variance 1/a, similar to Clayton and Kaldor (1987, Biometrics 43, 671-
681). We present maximum likelihood and method-of-moments estimates with standard errors for inference
on a~ Y/ 2, the relative risk standard deviation (RRSD). The moment estimates rely on only the first two
moments of the Poisson and gamma distributions but have larger standard errors than the maximum like-
lihood estimates. We compare these estimates with other measures of variability. Several examples suggest

that the RRSD estimates have advantages compared to other measures of variability.
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1. Introduction

Epidemiologists have searched for geographic variation in can-
cer rates in efforts to identify areas with unusually high or low
rates that might suggest leads to cancer etiology. For example,
melanoma rates in the U.S. vary according to latitude, pre-
sumably because of variations in exposure to sunlight (Scotto,
Fears, and Fraumeni, 1996), while lung cancer rates have been
especially high in seaboard areas due to exposure to asbestos
in shipyards (Tagnon et al., 1980).

A commonly used method of cancer mapping ranks rates
standardized for confounding effects such as age, classifies the
ranks into percentiles groups, and color codes geographic ar-
eas according to these groups. Although this technique is use-
ful for identifying areas with high and low cancer rates, it
provides information neither on the magnitude of the stan-
dardized rates nor on the absolute or relative variability of
these rates. In this note, we compare several measures of geo-
graphic variability of standardized rates and propose a mea-
sure called the relative risk standard deviation (RRSD).

One could, of course, simply compute the sample variance
of standardized cancer rates. However, this sample variance
depends on the intrinsic variation of the underlying relative
risks associated with the areas and on the random variation
of observed counts. The RRSD method attempts to estimate
the intrinsic variability, as this is the component of etiologic
interest. We give parametric and method-of-moments estima-
tors with standard errors for RRSD.

Delta method; Maximum likelihood; Method-of-moments; Overdispersion; Relative risk;

Other measures of geographic variability have been used.
Fraumeni et al. (1993) used the ratio of the maximum to the
minimum of standardized rates. Pickle et al. (1987) used the
interquartile range of the cube roots of standardized rates
(IQRCR). The cube root was chosen because the simple in-
terquartile range increased substantially with the mean rate.
However, as with the sample variance, both the ratio statis-
tic and IQRCR reflect not only the intrinsic variation but the
random variation. Likewise, a standard measure of overdisper-
sion (McCullagh and Nelder, 1989) does not estimate intrinsic
variability directly.

In this note, we define RRSD and other measures of geo-
graphic variability (Section 2). Using rates based on cancer
deaths from the National Center for Health Statistics and
population estimates from the U.S. Bureau of the Census, we
give some examples that suggest that RRSD is advantageous
(Section 3).

2. Statistical Notation and Methods

2.1 Statistical Model

Index areas by i = 1,...,I and age strata by j = 1,...J.
In our examples, we stratify only on age and carry out the
analyses within groups defined by race and gender, but one
could also stratify on other quantities. Assume the age-specific
mortality counts, denoted by {O;;}, are independent with

O;5 ~ Poi(yijviés), (1)
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where Poi(m) denotes the Poisson distribution with mean m,
yij 18 the number of person-years at risk, £; is an age effect
representing the underlying rate for age group j, and v; is an
area effect representing the underlying relative risk for area i.
Let Eij = ¥:55, the expected value of O;; when relative risk
4; = 1. When Ej; is assumed known (i.e., §; known) for all ,
the relative risk «; is estimated by the standardized mortality
ratio (SMR) O;./E;. of observed to expected counts summed
over j = 1,2,...,J (Breslow and Day, 1987, Chapter 2).
Under model (1), the variability in {7;} corresponds to
intrinsic geographic variability. Large variability in {v;}
suggests that further etiologic studies may be warranted.

2.2 The RRSD Measure and a Parametric Estimate of RRSD

Suppose each relative risk v; has been drawn independently
from a superpopulation of values with unit mean and standard
deviation RRSD. RRSD measures the intrinsic variability of
the relative risks and represents the variance component of
principal interest to epidemiologists.

To estimate RRSD, we consider a specific parametric
model,

¥i ~ e, o), (2)

where I'(c, &) denotes the gamma distribution with mean 1
and variance 1/a. The relative risks {;} are thus random
effects, and (1) and (2) define a mixed effects model. The
gamma. distribution is reasonable because it is right skewed,
agreeing with the notion of a spread for relative risks for
which the largest values are extreme due to exposure to
localized risk factors. Furthermore, nonparametric estimates
of the distribution of underlying relative risks have been right
skewed (Clayton and Kaldor, 1987). A mean of one for the
relative risks is reasonable when underlying age rates {¢;}
are internally estimated and allows for unique estimation of
parameters.

The standard deviation of v;, namely the RRSD, is a2
under (2). The maximum likelihood estimator (MLE) of
RRSD is based on the marginal distribution of {O;;}. This
marginal distribution is obtained by integrating the joint
distribution of {O;;} and {v;} given by (1) and (2) over {v;}.
We denote the MLE estimator of RRSD by &~ 1/2 Tterative
methods for obtaining &~ 1/2 and an estimated standard error
of it are given in Appendix A.

2.3 Estimating RRSD Using Only First and
Second Moment Assumptions

One can relax the parametric assumptions in (1) and (2) by
relying only on their implied first and second moments for
Z;; = 1og(0y5/yi;) and v; = log(y;). We derived an estimate
of RRSD that relies only on the approximations that Evy] = 0
and vary; = o~ ! and that, conditional on v}, EZ;; = v} +¢5,
where & = log(¢;) and var Z;; = (Eij'yi)_l. Thus, we have a
classic linear mixed effects model except that the conditional
variance of Z;; is not constant. We extend method 3 of
Henderson (1953) to compute an estimate &~ of o™, the
approximate variance of v;. An estimate of o™ 1/ 2. the RRSD,
is (d’l)l/z, which we denote as &~ /2. We estimate o™ by
equating the difference in weighted sums of squares for the
full model, EZ;; = ] + &, and the reduced model, EZ;; =
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&, to its marginal expectation (Appendix B). We use
as weights the conditional variances of {Z;;}, which we

approximate by {Oi—jl} (Breslow, 1984). When O;; = 0, we
substituted O;; = 1/2. We also derived an estimated standard

error of @~ 1/?
(Appendix B).

that relies only on the moment assumptions

2.4 The Interquartile Range of Cube Roots Measure

Pickle et al. (1987) used the interquartile range of the cube
roots (IQRCR) of directly adjusted rates (DARs) to measure
geographic variability. The DARs adjust for differences in age
distributions among areas by using common reference weights
{w; >0, E]J=1wj = 1} to average the age-specific rates
{rij = Os5/yi5, 7 = 1,2,...,J} of each area i. These rates
are typically expressed per 100,000 person-years. The DAR
for area 1 is Ejzl wjri; times 100,000. Pickle et al. applied
the cube root transform to the DARs because, for her data,
the interquartile range of untransformed DARs increased with
national rate O../y.., while IQRCR did not.

2.5 The Fractional Difference Measure

An alternative to IQRCR is to divide the interquartile range of
the untransformed DARs by the national rate. This is called
the fractional difference (FDIFF) measure, and it expresses
the difference between the first and third quartiles as a
fraction of the national rate.

2.6 A General Ouerdispersion Parameter ¢

McCullagh and Nelder (1989) model overdispersion by
multiplying the variance given by a generalized linear model
by an overdispersion constant ¢. This measure has been
suggested for detecting geographic variation (Olsen, Martuzzi,
and Elliott, 1996). In our context, the parameter ¢ can be
estimated as the deviance from a Poisson model for O;; with
mean E;; divided by the degrees of freedom IJ — J.

3. Cancer Mortality Examples to Compare RRSD
with the Other Measures

3.1 Materials

We applied these measures to U.S. cancer mortality data
for the time periods 1950-1969 and 1970-1994. County data
for these time periods were grouped, respectively, into I =
506 and 508 areas, called state economic areas (SEAs), as
defined by the U.S. Bureau of the Census (1966). (Two
SEAs representing Hawaii and Alaska were excluded for 1950~
1969 because data were not available for the entire time
period.) The SEAs consist of counties with similar economic,
demographic, climatic, physiographic, and cultural factors
and do not cross state boundaries.

Death counts and person-years were stratified into J = 18
age intervals: seventeen 5-year age intervals beginning with
0-4 years of age and a final interval of 85+ years of age. The
estimated person-year exposure was the cumulative total over
annual population estimates. The reference age distribution
{w;} used to compute the DARs was taken to be that of the
total 1970 U.S. population.

3.2 Test Case 1: Non-Hodgkin’s Lymphoma

Non-Hodgkin’s lymphoma (NHL) accounts for about 3% of
initial AIDS diagnoses (Biggar and Rabkin, 1992) because
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Table 1
Comparisons of five measures of geographic variability on cancer mortality rates in white men

DAR quartiles

Lower Upper &~ '/2  SE* & '/? SE  IQRCR  FDIFF b
Test Case 1: Non-Hodgkin’s Lymphoma, 1970-1994"

Age 20-54 2.49 3.25 0.147 0.009 0.164 0.030 0.125 0.265 1.522
Age 55+ 25.91 30.55 0.085 0.005 0.073 0.006 0.167 0.161 1.284
Test Case 2: Melanoma, All Ages
1950-1969 1.22 1.90 0.248 0.012 0.274 0.024 0.171 0.449 1.057
1970-1994 2.42 3.32 0.171 0.008 0.156 0.013 0.148 0.294 1.138
Test Case 3: Colorectal Cancer, All Ages
1950-1969 16.42 26.18 0.288 0.010 0.271 0.038 0.428 0.425 4,467
1970-1994 20.06 25.99 0.178 0.006 0.170 0.017 0.245 0.242 3.099

2 Estimated standard error.

b For FDIFF and IQRCR, the reference weights used to compute the DARs for the under and over age 55 categories
were rescaled so that they summed to one within these categories.

the risk of NHL is greatly increased in persons infected with
the human immunodeficiency virus (HIV). Because the HIV
epidemic was initially concentrated among homosexual and
bisexual men in urban settings, one could anticipate impor-
tant geographic heterogeneity of NHL rates, especially among
men under age 55. Gail et al. (1991) documented sharply ris-
ing NHL incidence rates among men 20-49 years of age be-
tween 1983 and 1987, with smaller increases among women
in this age range. During the 1980s, older men and women
in the U.S. have experienced much slower increasing rates of
NHL incidence in line with long-term secular trends. Thus,
one would expect that a good measure of intrinsic geographic
variation would indicate greater variability in mortality rates
for men under age 55 than for older men during 1970-1994.

The estimated standard deviation of {7;}, namely the
RRSD estimate &~/ 2 is much greater for younger white
men than for older white men, and this difference is sta-
tistically significant based on the estimated standard error
of a~1/2 (Table 1). The method-of-moments estimate & 1/?
gives similar results, but the estimates are much less precise
than &~/ 2, especially in the younger age range 20-54. FD-
IFF and the overdispersion statistic # also highlight the ge-
ographic variability in NHL mortality rates among younger
men. The statistic IQRCR, however, fails to detect the in-
creased geographic variability among younger men. This ex-
ample suggests that a"1/? and a~1/? may be useful mea-
sures of heterogeneity in area-specific intrinsic rates and may
be preferable to IQRCR.

3.3 Test Case 2: Melanoma

Melanoma incidence rates for whites in the U.S. are higher
in southern regions than northern regions, presumably as a
result of differential sunlight exposure. However, the difference
between the northern and southern rates has steadily
decreased over time (Lee, 1997). Some possible explanations
for this trend include increased outdoor recreational activity
in the North, greater uniformity of medical diagnosis and
care, increased mobhility of the population, and depletion of
the ozone layer. Thus, one might expect that the intrinsic

geographic variation in mortality rates was larger in earlier
time periods.

The estimated RRSD &~ !/? for white men is much greater
for 1950-1969 than for 1970-1994, and this difference is
statistically significant based on estimated standard errors
(Table 1). The estimate a2 gives comparable results, but
again the precision is much less than for &1/, FDIFF and
IQRCR also indicate greater geographic variability for the
1950-1969 period. The overdispersion statistic (13, however,
fails to detect a decrease in geographic variability over
time. This example suggests that &~ 1? and a~'/? may be
preferable to .

3.4 Test Case 3: Colorectal Cancer

The geographic variation of colorectal cancer has also
diminished over time (Ziegler, Devesa, and Fraumeni, 1986).
A possible explanation is increasing homogeneity in food
consumption patterns (Potter, 1996). For white men, the
RRSD estimates &~ */2 and &~ !/? indicate a significant
decline in geographic variability from 1950-1969 to 1970-1994
(Table 1). Again, & /2 is much less precise than a2
IQRCR, FDIFF, and $ also show decreasing variability in
this example.

3.5 Agreement Among Measures in 21 Cancers

One would like to use statistics like & '/? and @™ !'/? to rank
cancers according to degree of intrinsic geographic variahility.
Presumably, those cancers exhibiting large variability in
intrinsic area-specific rates warrant further specialized studies
to identify area-specific factors of etiologic significance.

We have listed for white men for the years 1970-1994
cancers with national rates of at least one death per 100,000
person-years and pleural cancer, which is rare but known
to vary greatly by geographic area (Table 2). Most of these
cancers will be included in the forthcoming cancer mortality
atlas of the U.S. from the National Cancer Institute. We
plan to make the data on these cancers available at the
Web site http://rex-nci.nih.gov. The values of a2

d—]/z, and the other measures of variability are shown,
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Table 2
Five measures of geographic variability applied to mortality data for 21 cancers in white men, 1970-1994
DAR quartiles a1/ a2 IQRCR FDIFF é
Cancer Lower Upper Value SE Rank Value SE Rank Value Rank Value Rank Value Rank
Pleura 0.13 0.33 0.532 0.024 1 0457 0.034 1 0179 5 0716 1 0722 21
Rectum 3.06 4.93 0.290 0.010 2 0.239 0.019 3 0.251 2 0425 2 1.703 4
Oral 2.99 4.33 0.255 0.009 3 0.203 0.014 6  0.190 4 0.335 4 1416 5
Other skin 0.93 1.40 0.235 0.011 4 0.263 0.020 2 0144 12 0.406 3 1087 15
Larynx 1.97 276 0.215 0.009 5 0193 0.015 7 0.149 9 0314 5 0978 18
Liver 2.68 3.64 0.209 0.008 6 0177 0.013 9 0149 10 0.286 8 1.292 7
Stomach 5.63 7.33 0.197 0.007 7 0204 0.024 5 0.164 8 0232 13 1810 3
Lung 62.25 80.73 0.196 0.006 8 0.158 0.011 10 0.359 1 0.264 12 6.353 1
Esophagus 3.91 5.27 0.185 0.007 9 0154 0.011 13 0.165 7 0.282 9 1175 11
Bladder 5.24 703 0.177 0.007 10 0.143 0.010 14 0.179 6 0275 10 1.193 10
Melanoma 2.42 3.32 0171 0008 11 0.156 0.013 11  0.148 11  0.2%4 6 1138 12
Colon 16.75 21.17 0.162 0.005 12 0.156 0.016 12  0.208 3 0219 14 2453 2
Hodgkin’s
disease 0.90 1.24 0.151 0.010 13  0.207 0.018 4 0109 13 0.291 7 1094 14
Connnective
tissue 0.92 1.22 0106 0.010 14 0.187 0.018 8 0097 16 0271 11 1.097 13
Brain 4.81 570 0.102 0.005 15 0.108 0.010 16 0.099 15 0.169 16 1.238 8
Non-Hodgkin’s
lymphoma 6.29 734 0.08 0.004 16 0.076 0.008 18 0.097 17 0.148 18 1.342 6
Kidney 4.53 534 0.085 0005 17 0.095 0.008 17 0092 18 0.163 17 1.030 16
Multiple
myeloma 2.39 3.45 0.080 0.006 18 0.121 0.012 15 0.087 20 0.181 15 0.796 20
Pancreas 943 1068 0.076 0.004 19 0074 0007 19 008 19 0.121 19 0954 19
Prostate 2096 2342 0.073 0.003 20 0071 0006 21 0104 14 0113 20 1.020 17
Leukemia 8.36 9.35 0.065 0.004 21 0074 0.006 20 0.077 21 0113 21  1.229 9
Rank correlation with &~ '/? 1 0.870 0.799 0.905 0.235

together with their ranks. FDIFF, IQRCR, and &~ /2 have
rank correlations of at least 0.799 with the maximum likeli-
hood estimate of RRSD, &~ 1/2, whereas ¢ has a rank correla-
tion of only 0.235. The DAR quartiles shown indicate that (Z)
is strongly correlated with the mean rate, whereas the other
measures have been selected, in part, because they are not
strongly correlated with the mean rate. This disagreement
between ¢ and the other measures suggests that  is not as
useful for ranking the geographic variability of various can-
cers.

To evaluate the agreement of these measures of variability
with true underlying RRSDs, we took the 21 estimates a~1/?
corresponding to Table 2 as the true RRSDs and simulated
values {7;} and counts {O;;} from (1) and (2). Equation (1)
also required estimates {f 7} and person-years {y;;} from the
original data. The mean rank correlations with the 21 “true”
RRSDs from 15 such simulations were 0.99 for d_1/2, 0.92 for
FDIFF, 0.89 for &~ '/, 0.81 for IQRCR, and 0.26 for ¢. Paired
t-tests revealed that all differences in rank correlations were
statistically significant. These simulations provide additional
evidence that ng is not useful for our purposes.

FDIFF, IQRCR, &~ '/2, and &~ !/? all rank pleural, rectal,
and oral cancers among the top six in variability, while FD-
IFF, &—1/2, and &~ '/? all rank prostate cancer and leukemia
as the bottom two (Table 2). These results are in accord
with U.S. epidemiologic data for these tumors. Pleural can-
cer is primarily due to exposure to asbestos, which was once
especially prevalent in the ship-building industry located in

coastal areas (Tagnon et al., 1980). Oral cancer, particularly
among men, has been strongly linked with tobacco use and
alcohol drinking, exposures that have varied substantially by
region (Blot et al., 1996). The reason for the variation in rec-
tal cancer is not entirely clear, but increasingly, it has been
specified as intestinal cancer on death certificates, which is
then categorized with colon cancer (Chow and Devesa, 1992).
Whether this misclassification has varied geographically is un-
known, but it may have contributed to the high variability
observed for rectal cancer. In contrast, prostate cancer risk
appears to be strongly influenced by host susceptibility hor-
monal and genetic factors, although diet appears to play a
role (Giovannucci, 1995). Leukemia rates tend to be higher
in areas associated with agricultural activity (Pickle et al.,
1987), but there are only 3 million farmers, and the relative
risk associated with farming is only slightly elevated from 1.1
to 1.4 (Blair and Zahm, 1991).

4. Discussion

RRSD is a measure of variability in intrinsic area-specific rel-
ative risks under the mixed effects model given by (1) and
(2). RRSD is therefore an appealing parameter for identifying
cancers that may be influenced by the prevalence of localized
risk factors. Estimates of RRSD like &'/ and &~ '/? com-
plement graphical depictions of geographic areas with color
or shading that indicate percentile groups of risk. Such visual
displays point to areas of high or low risk, while estimates of
RRSD quantify the geographic variability.
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Our methods of inference for RRSD are closely related to
other works. Our model given by (1) and the one-parameter
gamma distribution in (2) is identical to the mixed effects
model in Clayton and Kaldor (1987) except that they used a
two-parameter gamma distribution and a constraint different
than a mean of one to uniquely estimate parameters. Clay-
ton and Kaldor did not concentrate on estimating intrinsic
geographic variability. Martuzzi and Hills (1995) estimated
intrinsic variability using the Clayton and Kaldor model ex-
cept that they assumed that stratum (e.g., age) effects were
known, eliminating the need for an identifiability constraint.
Martuzzi and Hills did not provide standard errors of the es-
timates but instead computed confidence intervals by profile
likelihood. Muirhead and Butland (1996) estimated intrinsic
variability and gave standard errors using a different model
for the unconditional variance of the counts and also assumed
that stratum effects were known.

If one is willing to assume only the first two moments of
the Poisson and gamma distributions in (1) and (2), then the
moments estimate &~ '/2 is an alternative to the maximum
likelihood estimate &~ '/2. The estimate d"l/ 2 however, had
a much larger estimated standard error than a"l/ in our ex-
amples. We further compared &~ '/? and &~'/? on simulated
counts from the mixed effects model (1) and (2) as described
in Section 3.5. We generated 100 sets of simulated counts
for 10 of the cancers in Table 2. The statistic &~ '/2 had a
sample standard error 1-2 times that of é_l/Q, depending
on the cancer. The mean of the estimated standard errors of
&~ /2 exceeded the sample standard error by 1.2-1.9 times.
For Hodgkin’s disease and multiple myeloma, &2 was very
biased and yielded Wald confidence intervals for o~ Y/? that
had coverage well below nominal levels. One possible explana-
tion is that our moment approximations are sometimes very
bad when rates are low. In contrast, & 1/2 showed little bias
and its Wald confidence intervals for a ™*/? had coverage close
to nominal levels. We conclude that the potential advantage
of the method of moments estimator implied by its fewer as-
sumptions is often counterbalanced by its poorer properties,
and we can recommend its use only for cancers with relatively
high rates.

It is difficult to verify empirically that the estimates &
and @ 1/2 of RRSD are preferable to other measures of vari-
ability, such as IQRCR, FDIFF, or qS, because there are few
cancers for which independent data, apart from the observed
rates, are available to demonstrate geographic heterogeneity
of intrinsic rates. We compared these measures based on the
expectations that NHL mortality rates are more heteroge-
neous in younger men than in older men due to urban local-
ization of AIDS-related diagnoses and that melanoma and col-
orectal cancer mortality rates have become less heterogeneous
over time. In these cases, it appears that IQRCR performs
poorly for NHL and (2) performs poorly for melanoma, while
&=l 2 T 2 and FDIFF are good indicators of intrinsic-rate
heterogeneity.

Moreover, a survey of mortality rates for 21 cancers among
white males (Table 2) indicates that &~1/2, a='/2 IQRCR,
and FDIFF are highly correlated. The quantity #, however, is
not highly correlated with these measures. Simulations in Sec-
tion 3.5 show that ¢ also does not correlate highly with true
underlying RRSDs. A Taylor series expansion of the deviance

~1/2
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expression through quadratic terms shows that the expecta-
tion of qS under (1) is approx1mately

I

ij Vi log (/%) (3)

(Details are available from the first author.) Thus, the mag-
nitude of ¢ depends always, at least in part, on the Poisson
means {E;;v;} except in the homogeneous case when v; = 1
for all 4.

RRSD estimates, however, may not be in accord with some
epidemiologic data. For example, estimates of relative risk
based on incidence for areas in England and Wales have a
range much narrower for Hodgkin’s disease than for non-
Hodgkin’s lymphoma or leukemia (Cartwright et al., 1990),
whereas for U.S. mortality data, & ~1/2 is much higher for
Hodgkin’s disease among these cancers (Table 2). The dis-
crepancy might be due to differences between incidence and
mortality geographic variation in these cancers. This could be
investigated by computing RRSD estimates for the European
mortality data as summarized in Smans et al. (1992).

Nonetheless, there are theoretical reasons for believing
RRSD may be preferable to other measures. In particular un-
der (1) and (2), RRSD reflects the intrinsic variability in the
relative risks {~;} as it is the standard deviation of the under-
lying distribution on {v;}. Quantities like &~ Y2 and a~1/?
estimate this standard deviation whether the absolute rates
are large or small. The other measures of variability consid-
ered are less appropriate than & ~1/2 5r =1/2 because they
reflect random variation in the counts {O;;} as well as in-
trinsic variation (e.g., IQRCR, FDIFF), or worse, are highly
correlated with the mean rate (e.g., ¢).

It is important to note, however, that a~1/? may converge
to the boundary point zero, invalidating the standard error of
this estimate, and &~ '/? can be negative (Appendix B). These
values of & 1/ 2 and &~ '/? occur most often when rates are
small and few deaths are observed. Of course, equations (1)
and (2) may not hold precisely. The conditional distribution in
(1) requires no interactions between age and area effects on a
log scale, the random effects distribution in (2) may be incor-
rect, and the combined model only allows for overdispersion,
not underdispersion. In (2), it is assumed that the relative
risks of neighboring areas are uncorrelated. In the presence
of autocorrelation, more elaborate models may be employed
(e.g., Besag, York, and Mollié, 1991). When autocorrelation is
important, however, there is no simple summary measure of
geographic variation because the variance—covariance matrix
of the relative risks is characterized by correlation parameters
in addition to RRSD.

One can avoid parametric assumptions on the random ef-
fects distribution by computing the nonparametric MLE of
the distribution on {v;}. Clayton and Kaldor (1987) used this
approach to estimate {v;}, and Bohning and Schlattmann
(1992) have developed software to compute this MLE. The
standard deviation of the nonparametric MLE is an RRSD
estimate. Further work is needed to compare the precision
and bla,s of estimates from this approach with that of & —1/2
and &~

When (1) and (2) are not valid, RRSD is an imperfect
summary of intrinsic variability. Even when (1) and (2) are
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not precisely correct, however, estimates of RRSD may still
be a useful descriptive summary for identifying cancers that
warrant further study.
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RESUME

Les méthodes couramment utilisées pour détecter les varia-
tions géographiques des taux de cancers sont basées sur des
classements et lidentification des classes ol les taux sont
élevés et faibles, mais sans fournir ordre de grandeur des taux
ni leur variabilité. Pourtant, des mesures de variabilité pour-
raient étre utiles en suggérant quel type de cancer mériterait
des analyses approfondies pour quels facteurs de risque géogra-
phiques. On consideére un modele a effets mixtes ou le loga-
rithme de la moyenne de Poisson des taux de mortalité sur
des strates fixées (par exemple des groupes d’age) suit un
modele a effet additifs sur les logarithmes des risques relatifs
associés aux unités géographiques. On suppose que ces ef-
fets aléatoires suivent une distribution gamma de moyenne
1 et de variance 1/a comme le propose Clayton et Kaldor
(1987, Biometrics 43, 671-681). On présente les estimations
du maximum de vraisemblance et de la méthode des moments
en prenant a” /% comme erreur standard pour estimer la
“déviation standard du risque relatif” (DSRR). On peut avoir
confiance dans 'estimation des deux premiers moments de la
loi de Poisson et de la loi gamma, mais les erreurs standards
sont plus élevées que pour celles des estimations par le maxi-
mum de vraisemblance. On compare ces estimations a celles
fournies par d’autres mesures de la variabilité. Plusieurs exem-
ples suggerent que les estimations par la DSRR présentent des
avantages comparativement aux autres mesures de la varia-
bilité.
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APPENDIX A
Derivation of &~ '/? and Its Standard Error
A1 The MLE of a='/?

From (1) and (2), it follows that the marginal density of
O = {0} given cv and & = {¢;} is

o,, !

1% EO 11045 0, 6),

=1

m(0; o, €) =

where f;(-;a, &) is the density corresponding to the negative
binomial distribution with mean E;. and variance E; (1 +
E;./a). With respect to a and &,

I 0, -1

I J
logm(O; a, &) x Z Z O;jlog E;; + Z Z log(k + «)
i=t j=1

=1 k=0

1
+ Ialoga — Z(Oi. + a)log(E;. + a),
i=1

where the summation over k is defined as zero when O;. = 0.
The derivative of log m(O; «, £) with respect to a is

I O, -1
—d—lo m(O;a,§) = k+a_1+lloga+1
da &

i=1 k=0

_ Z[‘ [O to log(E;. —I—a)} , (A1)

o

and the derivative of log m(0O; o, §) with respect to &; is

I
0.;/& ~ Z'Uij(oi- +a)/(E;. + o), (A.2)

i=1
where O.; = v, O;;. Setting (A.1) and (A.2) to zero and
solving for « and £ yields the MLEs & and é One way to
solve these equations is to set E i =01y 1n1t1ally, compute

& from (A.1) using E;. = 27 S=1 yuﬁj, update fj from (A.2)
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using a = &, etc., until convergence. By functional invariance,
the MLE of o~ /2 is 4~1/2

A.2 The Standard Error of &~ '/?

Let 1 x J vector loe = (d/de)(d/d€)logm(O | «,€&) and
similarly define laa, lgo, and lgg of 1 x 1, J x 1, and
J x J dimension. These are elements of the observed Fisher
information for a and €. From (A.1),

I O; -1
laa= =Y (k+a)?

i=1 k=0
I
=D (O + @)/(Ei. + a)* = 2/(Ei. + a)].

i=1

+1/a

From (A.2),
1
lag; = zyzj(ozﬂ +a)/(E;. +a)?,
=1
B [ B B
0.j/6 +>_ vii(0i + a)/(Ei. + @),

=1

It

lese;
and, for 7 # k,

Zyzﬂhk

The asymptotic variance of & is —(loa — l,yglggllgﬂ)
the delta method, —{(lna —{

uﬁlg_gl lgm)4a3] 1/2 evaluated at
& and £ is an estimate of the standard error of &~ Lz,

lfij ——a)/(E +C¥) .

! From

APPENDIX B

Deriation of a~'/? and Its Standard Error

B.1 The Method-of-Moments Estimator of o~ l/?

Let Z = {Zi;} = (Z11,Z12,..., 214,221, Z22, .., Z1g) ",
I(-) denote the indicator function, and D(h) dencte a diagonal
matrix with the elements of h on the diagonal. Conditional
on v*, Z has approximately the variance-covariance matrix
Wl where W = D(O), and mean A~* + BE”, where
A = (A,Ay,...,Af), B = (B1,By,...,By), Ay = {t;;}
with tij = I(i = r), and B, = {UU} with Ujj = I(j =
s). Let X equal A concatenated with B. The difference
between the weighted sums of squares for the full model
EZ Avy* + BE and the reduced model EZ = B§ is
0'XTWX0 - ¢,"BTWBE};, where 8 = (3*,£") and £, are
weighted least squares estimates of 8 = (v, £*) and &) from
the full and reduced models respectively. By matching this
difference with its expectation, we obtain for varvy; ~ a~!
the estimate ' = [§'XTWX6 - £"BTWBE, - (1 -
1)]/t, where t is the trace of AT(I — Pg)"W(I — Py)A
and Pg = B(BTWB) 'BTW. An estimate of a”? s
(”1)1/2 which we denote &~ !/2.

B.2 The Standard Error of &~ '/2
Let w = (0, &), oz_l). The least squares estimating equations
for @ and & and the moment equation for & V2 are Uj(w) =
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XTWX68 - X'WZ, Uy(w) = B'WB¢; — B'WZ, and
Us(w) = 8 XWX - STBTWBE}, — o't and have root
@ = (é,é{], a~ 1). Because the elements of Z are independent,
a first-order Taylor expansion shows that

-1
W ~ N{w, lim [—d EU(w)}
n—x [ dw

x cov U(w) {—dii;EU(w)T] - }

in law provided the variance-covariance matrix is non-
singular. It is singular because the columns of X are not lin-
early independent, but this can be avoided by dropping one
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of the columns and its corresponding parameter from 8. The
asymptotic variance of @~ ! is obtained as the appropriate el-
ement of the ygtriance-cqxfariance matrix, which computes to
401LO - 265 M6 + £V NES) /12, where

L=X"+X"WAA"WXa ™!,

M=B"WX + B"WAATWXa !,
and

N=B'WB +B"WAA"WBa .

By the delta ‘method, an estimate ‘of the standard error of
‘%_i/z is [(07LO — 2657 MO + eSVNES) 2/t evaluated at
0, &), and &~ L.



