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Introduction
The case-control design is a widely used approach for investi-
gating associations between candidate genes and dichotomous
disease traits. As most commonly implemented, cases are
drawn from a population-based disease registry and unrelated
controls from their source population, perhaps matching on age,
gender, ethnicity, or other potential confounders. As has been
pointed out by various authors (1–6), such designs are suscep-
tible to a form of confounding known in the genetics literature
as “population stratification” if the gene under study shows
marked variation in allele frequency across subgroups of the
population (at least within levels of the matching factor) and if
these subgroups also differ in their baseline risk of the disease.
Several extreme examples of such confounding have been
widely discussed in the literature and are revisited briefly
below. At the present time, however, little is known about the
extent and implications of this phenomenon in less extreme
situations. In this report and the “Counterpoint” that follows
(7), we discuss the potential seriousness of this concern and
suggest approaches to dealing with it.

Before proceeding, we wish to set the context of this
contribution. Gene association studies (whether case-control or
cohort) can be used either in an “indirect” manner as a tool for
mapping genes using linkage disequilibrium or in a “direct”
manner for evaluating associations with postulated causal
(“candidate”) genes.3 Both indirect and direct associations are
subject to the same potential bias attributable to population
stratification,4 but here we are primarily concerned with the
latter type of study. False-positive associations with markers
that are in linkage disequilibrium with a causal gene, as can

easily arise in recently admixed populations for example, will
often not be replicated in different populations but are never-
theless “interesting” as an indication that a causal gene may be
in the general region. [In fact, studying admixed populations
can benefit linkage disequilibrium mapping (8).] Although
some effort by the scientific community may be wasted trying
to replicate such reports, this may still be rewarding in the
context of the larger gene mapping effort in terms of further
localization of such genes. On the other hand, false-positive
associations with candidate genes are essentially dead ends, and
if a high proportion of such associations turn out to be false
positives, the wasted effort could be considerable.

Population Stratification: The Potential Problem
Classic Examples. Several candidate gene association studies
are commonly cited as examples of population stratification.
One classic example is given by Knowler et al. (9), who
showed that a failure to adjust for confounding by population
stratification would produce a spurious inverse association be-
tween variants in the immunoglobulin haplotype Gm3,5,13,14

and non-insulin-dependent diabetes mellitus among residents of
the Gila River Indian Community. This association was not
causal and instead reflected confounding by a population-strat-
ifying factor, degree of Caucasian heritage. In particular, the
inverse association actually reflected the association between
heritage and Gm3,5,13,14 and the inverse association between
Caucasian heritage and risk of non-insulin-dependent diabetes
mellitus. When Knowler et al. (9) adjusted for heritage, the
inverse association disappeared.

As another example, numerous studies of the purported
association between the A1 allele at the D2 dopamine receptor
locus (DRD2) and alcoholism give equivocal results; initial
reports strongly suggested an association, whereas further stud-
ies failed to support this finding. Gelernter et al. (10) evaluated
published studies attempting to replicate the initial association
observed by Blum et al. (11) and found much greater hetero-
geneity among studies than differences between alcoholics and
controls. This result might be explained by population stratifi-
cation, because there are large ethnic differences in DRD2
alleles, from 10% among Yemenite Jews to 80% among Chey-
enne Indians; among the controls in the 11 studies reviewed by
Gelernter et al. (10), the frequencies ranged from 6 to 24% (10
to 37% among cases). Moreover, there is a wide range of ethnic
differences in the incidence of alcoholism. The few studies that
were restricted to ethnically homogeneous populations did not
observe an association (11). Two recent reports, both using
family-based study designs, also found no association with
DRD2 alleles (12, 13) and provide a comprehensive discussion
of ethnic variation in allele frequencies and literature on this
association. Although these examples imply that population
stratification might be a serious concern in genetic association
studies, the potential magnitude of the bias resulting from this
phenomenon remains unclear.

A somewhat different perspective on population stratifi-
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cation is given by a third classic example. An association has
been reported between the 5�FP RFLP adjacent to the insulin
gene on chromosome 11p and insulin-dependent diabetes mel-
litus (14). Although this association had been consistently rep-
licated across several populations, standard affected sib pair
methods initially gave no evidence of linkage (15). This situ-
ation suggested that the association results might be attributable
to population stratification and led Spielman et al. (16) to
implement the TDT,5 which showed highly significant evi-
dence of linkage disequilibrium. It appears that the initial fail-
ure of the affected sib pair linkage tests was attributable to their
low power for detecting genes with modest relative risks. Here,
the use of family member controls helped confirm a population
association that could otherwise have been dismissed as an
artifact of population stratification.

Finally, an example of population stratification in cancer
research has recently been presented.6 Here, the relation be-
tween a CYP3A4 variant and prostate cancer among African-
Americans was investigated with a case-control study. Ignoring
potential population stratification within this population, a
strong positive association between the CYP3A4 variant and
disease was observed (P � 0.0007). To correct for potential
population stratification, the corresponding CYP3A4-prostate
cancer test statistic was divided by the average of the test
statistics obtained when looking at the relation between 10
unlinked genetic markers and prostate cancer. (This genomic
adjustment approach to addressing population stratification is
discussed further below.) This correction resulted in the
CYP3A4-prostate cancer P increasing to 0.254, suggesting that
population stratification may have led to the initial positive
result. Of course, there remain some questions surrounding this
genomic control approach, such as the type and number of
unlinked markers.

Beyond these somewhat extreme examples, a more com-
pete understanding of population stratification requires consid-
eration of whether the circumstances leading to this phenom-
enon commonly exist. As noted above, the potential for this
bias hinges on the heterogeneity in allele frequencies and dis-
ease risks across and within populations.
Population Heterogeneity in Allele Frequencies. Allele fre-
quencies of many genes have been shown to vary substantially
across populations (17). Moreover, the extent of variation is
directly related to the genetic distance between populations
(18). Because infectious disease exerts strong negative popu-
lation pressure, often killing people before they reach repro-
ductive age, it is a key factor underlying genetic diversity.
Populations have historically been subjected to different infec-
tions, depending on the ecology of where they live. Genes that
control immune response to infections (different genes, depend-
ing on the disease) are therefore the most highly polymorphic
and the most subject to confounding by population stratifica-
tion. Furthermore, because many of the genes regulating im-
mune surveillance may also be involved in other diseases such
as cancer, lessons from infectious disease may have broader
relevance, even if infectious agents themselves are not involved
in the etiology of most cancers (19, 20).

For the purposes of candidate gene association studies,
whites of European or Middle Eastern origin are generally
regarded as having a relatively homogeneous gene pool, but in
fact, there is tremendous variation in genes across Europe, the

Middle East, and India/Pakistan (21). The degree of variation
is, of course, dependent on the allele being examined. Alleles
that cause rare diseases, such as the cystic fibrosis gene or the
Rh gene, have relatively homogeneous patterns across Europe
(21). On the other hand, genes that are highly polymorphic,
such as the HLA alleles, have much greater variation. There are
at least four major HLA combination patterns detected through-
out Europe, with a concentric gradient spreading out from the
Middle East, and various other minor patterns (21). Sokal et al.
(22) showed that across 3384 localities in Europe, 49 of 59
alleles had substantial variations in allele frequencies. There-
fore, populations fairly close together have been shown to
exhibit substantial allele frequency variations, leading to po-
tential differences within apparently “homogeneous” groups.

In some parts of the United States, this subracial ethnic
variation is not a problem. For example, 80% of the white
population in Illinois reported to the 1990 United States Census
Bureau that their ancestry was German. Thus, the chance of
producing a spurious association in an ethnicity-matched pop-
ulation there is unlikely. Elsewhere, however, such as in Cal-
ifornia, the origins of individuals within the broadly classified
ethnic groups are extremely diverse, so that there is not even a
50% majority of any particular group, and there are large
proportions of many disparate groups represented and many
mixed-race individuals.
Population Heterogeneity in Disease Rates. Of course, for
population stratification to occur, the variation in allele fre-
quencies must also be correlated with the subpopulation’s var-
iation in their baseline disease rates (i.e., the rates not attribut-
able to the specific candidate gene under study; Ref. 23). In
particular, if the baseline rates do not vary by subpopulation,
then confounding cannot occur. Nevertheless, there are numer-
ous examples of strong gradients in disease rates across and
within countries or major ethnic groups.

Genetic variation is particularly pronounced in infectious
disease susceptibility because it is the most genetically dynamic
physiological system, having evolved for quick adaptation.
Epidemiological studies of infectious diseases indicate that
there exists a broad range of susceptibilities to the major in-
fectious diseases, depending on whether populations have been
in equilibrium with a disease for a long time or have been
exposed only relatively recently. This heterogeneity is apparent
even within broad categories of ethnic groups.

Population heterogeneity in disease rates has been partic-
ularly well described for cancer and for some sites span a range
of 100-fold or more (24). For example, the rate of stomach
cancer is much higher among people in Asian countries (e.g.,
71–96/100,000 in Japan in comparison with non-Hispanic
whites in the United States (5–9/100,000). Furthermore, disease
rates can vary within the broadly defined populations as well.
For example, breast cancer incidence rates across Europe range
from 26/100,000 in Kielce, Poland to 95/100,000 in Isere,
France. Although migrant studies have shown that rates of
many cancers tend to converge toward those of their host
country in a few generations, suggesting environmental accul-
turation, their convergence of gene frequencies would be ex-
pected to be much slower, depending upon the rate of inter-
marriage. Thus, although the potential for confounding by
unmeasured environmental risk factors is reduced, the potential
for confounding by other unmeasured genes remains.
Confounding. If there were only two subpopulations and if
they differed in both allele frequency and baseline risk, then
ignoring these differences in a candidate gene case-control
study would lead to confounding. Whether the direction of

5 The abbreviation used is: TDT, transmission-disequilibrium test.
6 Rick A. Kittles, Human Genetics, in press, http://link.springer.de/link/service/
journals/00439/contents/tfirst.htm.
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ensuing bias is positive or negative would depend upon whether
these differences are in the same or opposite directions. But
whatever the direction of the bias, it will always increase the
chances of a false-positive significance test if the candidate
gene has no causal effect on the risk of disease. The potential
magnitude of such confounding bias and distortion of signifi-
cance levels is well described in standard epidemiological text-
books (25–28). If, however, there are a large number of sub-
populations, then even if they differ markedly in both allele
frequencies and baseline rates, it seems unlikely that there
would be a systematic correlation between these two factors
simply by chance (23) that is without some causal reason for
such a correlation. In that case, one could argue that that
correlation is itself part of the causal pathway that needs to be
understood. This argument is based on a combination of sim-
ulation studies and empiric analyses, which shed valuable light
on the magnitude of the potential problem in practice (23). We
have no fundamental quarrel with these conclusions, at least
with regard to non-Hispanic whites of European descent. How-
ever, we note that not all association studies have been con-
ducted in such populations, and that mixed-race individuals are
increasingly common in many parts of the United States. It may
be difficult to determine individuals’ ethnic admixture in such
populations (although the genomic control approaches dis-
cussed below may prove helpful). Indeed, some of the “classic”
examples discussed above have involved other racial groups
and mixtures of two groups, such as the Knowler study of Pima
Indians and the Blum study of African Americans and whites.

Even in the absence of confounding bias, population strat-
ification can distort significance levels through “cryptic relat-
edness” (29–32), i.e., unobserved ancestral relationships be-
tween individual cases and controls who are naively treated as
independent in the standard �2 test. In particular, pairs of cases
are likely to be more closely related than are pairs of controls
or case-control pairs if in fact their disease does have a common
genetic basis. This will have the effect of inflating the “effec-
tive” sample size, thereby increasing the false-positive rate,
even in the absence of any confounding bias. However, this
effect is likely to be more important in inbred population
isolates than in large out-bred populations. Nevertheless, even
if the magnitude of the bias attributable to either confounding
or cryptic relatedness is small, the effect on significance levels
is related to sample size, and hence the very large case-control
studies currently being contemplated involving thousands of
subjects could have considerably inflated false-positive rates.
Although there are thus far no empirical data on the magnitude
of the overdispersion of the �2 test of association caused by
cryptic relatedness, theoretical arguments, combined with rea-
sonable estimates of the size of the relevant “Wright coefficient
of inbreeding” for European populations, led Devlin et al. (30,
31) to conclude that “While bias can be a critical factor in
traditional epidemiological studies, we argue that overdisper-
sion is the dominant consequence of confounding in genetic
studies.”

Population stratification also has the potential to confound
inferences about gene-environment or gene-gene interactions,
although generally to a much lesser extent (23). The reason for
this is that population stratification will generally bias the
estimate of the effect of a gene to about the same extent in both
exposed and unexposed groups, unless there is substantial var-
iation between subpopulations in the association between gen-
otype and environment (although it also depends in part on such
other factors as the variability in exposure prevalence, the
average magnitude of the genotype-exposure association, and

the association between baseline rates and exposure prevalence;
details available from the authors on request).

Of course, some confounding can be controlled by strat-
ification, matching, or statistical adjustment, as discussed fur-
ther below, but this is generally only possible for major racial
groups. What is at issue is how much variation in allele fre-
quencies and disease rates there is between subdivisions of the
major ethnic categories. Unfortunately, there are very little data
presently available to address this question. This should be a
major priority for the next generation of efforts to characterize
human genetic variation, as in the planned Human Genome
Diversity Project7 and Environmental Genome Project,8 for
example. However, controversy remains over whether these
projects should retain ethnic identifying information.
Failures to Replicate. Part of our concern about the potential
magnitude of the population stratification problem derives from
the widespread, but largely anecdotal, impression that the lit-
erature on candidate gene associations is fraught with a dis-
turbingly high frequency of failures to replicate (33–36). For
example, Cardon and Bell (35) state that “there are numerous
examples of associations that cannot be replicated, which has
led to skepticism about the utility of the approach for common
conditions.” As noted by London et al. (37), much of the
variability in the reported outcomes, beyond what might be
expected just by chance, can be traced to methodologic differ-
ences between studies, including such factors as use of inap-
propriate controls (convenience samples such as lab personnel
or hospital controls with other diseases), failure to control even
crudely for ethnicity, and multiple significance testing (often
with selective reporting of results). The latter can be particu-
larly severe when associations have been identified in a
genome-wide scan (38). However, we believe that at least some
of the heterogeneity in results could be attributable to residual
population stratification. Without more detailed data on the
ethnic composition of the subjects in conflicting studies, it is
impossible to reach any firm conclusions about whether this is
indeed the explanation. Thus, we do not contend that population
stratification is the most likely culprit of the failure to replicate,
although some authors may have made this interpretation. In an
editorial bemoaning that “the majority of association studies are
never replicated,” Nature Genetics issued the following guide-
lines (39):

Nature Genetics continues to welcome submissions of associ-
ation studies of high quality. Ideally, they should have large
sample sizes, small Ps, report associations that make biological
sense and alleles that affect the gene product in a physiologi-
cally meaningful way. In addition, they should contain an initial
study as well as an independent replication, the association
should be observed both in family based and population-based
studies, and the odds ratio and/or attributable risk should be
high. Few studies will meet all criteria, but to minimize our risk,
we will apply high standards. In general, we will expect manu-
scripts reporting genetic associations to include an estimate of
the effect size and to contain either a replication in an inde-
pendent sample or physiologically meaningful data supporting a
functional role of the polymorphism in question. (emphasis
added)

How widespread is this problem of nonreplication? In an
attempt to address this question, Terwilliger and Weiss (40)
reviewed 18 months of reports in the journals Neuropsychiatric
Genetics and Psychiatric Genetics and plotted the distribution

7 Internet address: http://www.stanford.edu/group/morrinst/hgdp.html.
8 Internet address: http://www.niehs.nih.gov/envgenom/home.htm.

507Cancer Epidemiology, Biomarkers & Prevention



of Ps for reported candidate gene associations. Under the null
hypothesis that there are no true positive associations in the
entire ensemble [assuming that all associations tested were
published, i.e., no “publication bias” (41)], the distribution of
Ps should be uniform between 0 and 1 and departures from
uniformity can be used to derive an estimate of the number of
true-positive associations (42). In this analysis, Terwilliger and
Weiss were unable to reject the global null hypothesis of
uniformity, suggesting that, at least within these journals, there
may indeed be a problem with replicating results. Of course, it
is a theoretical possibility that the global null hypothesis is true,
but given the diversity of genes and outcomes under study,
many with strong prior basis, it seems unlikely to us that all of
the null hypotheses could be true.

We are aware of only two other such systematic surveys of
replication rates for candidate gene associations. Ionnidis et al.
(43) conducted a meta-analysis of 370 studies concerning 36
associations and found significant heterogeneity for the major-
ity of the reported associations; in particular, they concluded
that “the results of the first study correlate only modestly with
subsequent research on the same association.” Hirchhorn et al.
(44) identified 162 associations between diseases and common
polymorphisms that have been studied three or more times. Of
these, only 6 were highly consistently reproducible (75% or
more of studies positive); of the remaining 156, 98 had at least
one more positive study (the “mixed” category), and 58 had
only one positive study.

What might one expect in terms of the frequency of true
positive associations, purely on the basis of significance levels?
True associations are probably rare, given the 30,000–40,000
genes and �1,000,000 polymorphisms in the genome. Even if
one guessed well as to “candidate” genes, one has to admit that
any given polymorphism has a very small chance of being a
causal allele. Thus, even with high specificity, false positives
will far outweigh true positives. For example, assume one
adopts a conventional significance level of � � 5% and only
conducts studies with at least 50% power. If there were 1,000
candidate alleles to choose from, of which say 10 were really
causal, then one would expect 50 false positives (1,000 � 5%),
which would likely be many more than the expected number of
true positives (5 � 10 � 50%). On this basis, it seems likely
that false positives will be a much bigger problem than false
negatives, suggesting that an extremely conservative signifi-
cance level should be adopted when testing many candidate
gene associations, unless one has a strong prior basis for belief
in any particular one. The problem of multiple comparisons has
been widely discussed in both the epidemiological and genetic
literatures (45–48) but is somewhat beyond the scope of this
article. In any event, the rate of false positives that would be
generated by the action of chance alone would be expected
to be the similar for case-control designs using unrelated or
family-based controls.

The reader might of course wonder whether the situation
is any better for gene mapping studies by linkage analysis,
where there are also numerous examples of replication failure,
despite the well-developed theory for inference based on se-
quential testing underlying the conventional criterion of a lods
of 3 (49) or the more recently suggested criterion of 3.6 (46).
Unfortunately, we were unable to identify any recent systematic
studies of replication rates for linkage findings, although an-
other recent Nature Genetics editorial (50) echoed the prevail-
ing sentiment that “Genome-wide linkage scans designed to
localize disease genes have yielded few significant findings,
and failure to reproduce published linkage results is endemic”
(emphasis added). However, a review of 1665 marker-marker

linkages conducted before modern DNA markers were avail-
able, Rao et al. (51) found that lod scores of �1 were seldom
replicated, whereas those �2 usually were.

Approaches to Dealing with Confounding
Better Measures of Populations. The conventional ap-
proaches to dealing with confounders in epidemiology are by
matching, stratification, or multivariate adjustment models. In
the context of population stratification, this calls for more
detailed information on ethnicity than such broad conventional
categories as Caucasian, African American, Hispanic, Asian,
and Other. There are two dimensions to this challenge: (a)
individuals must be allocated to the finest ethnic origin cate-
gories that can reliably be determined; and (b) individuals from
mixed-ethnicity families must be treated appropriately.

Definition of suitable ethnicity categories is a matter of
judgment, entailing consideration of the trade-off between
specificity and reliability. In general, however, our view is that
the investigator is better off collecting the information with a
high degree of specificity, reasoning that even if there is some
misclassification, it is probably less than that resulting from use
of overly broad categories to begin with. If cases and controls
are individually matched, as is generally desirable to allow for
various confounding variables in addition to ethnicity, it may
not always be possible to obtain an exact match on ethnicity,
but at least an approximate match should be attempted, with
further adjustments made in the analysis. Because measurement
error in a stratifying variable will generally lead to partial loss
of control of confounding (52), one might consider an analysis
that allows for the uncertainties in the measurement of ethnic-
ity, in the spirit of some approaches to correction for exposure
measurement error (53), although these uncertainties can them-
selves be difficult to quantify.

Mixed-ethnicity families pose greater challenges. Here, it
can be very difficult, if not impossible, to find a matching
control for an individual with multiple ethnic origins, and the
investigator is forced to rely on multivariate models for adjust-
ment. The key is to obtain as detailed information as possible
on the ethnic origins of the subjects’ ancestors. We generally
recommend that questions be asked not simply about the sub-
jects’ own ethnic identification but also about the origins of
his/her parents’ and, if possible, grandparents [see, for example,
Whittemore et al. (54), who inquired about the ethnic origins of
parents and grandparents]. In fact, it is probably worthwhile to
query cases and controls about all of their known ancestor’s
countries of origin. Rather than allocate the entire individual to
a single stratum in the analysis, as is conventionally done, one
can construct a covariate for each stratum, giving the proportion
of ancestors derived from each ethnic group and then include
these covariates as adjustment variables in a multiple logistic
regression model.
Use of Family-Member Controls. The difficulty of finding
ethnically matched controls can be completely overcome by use
of family-member controls. The most commonly used familial
case-control designs involve the use of siblings or parents as
controls (55–57). Sibling controls are derived from exactly the
same gene pool as the cases and thus represent exactly matched
controls, but they pose other practical and statistical difficulties.
The major practical difficulty is that not every case will have an
available sibling; if sibship size or other determinants of avail-
ability are associated with genotype, selection bias will result,
which could go in either direction, depending upon the direc-
tion of the association, and could increase the risk of spurious
associations with candidate genes that are associated with such
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selective factors. A second difficulty is that controls should
generally be selected from siblings who have already survived
to the age at diagnosis of the case free of the disease (58). In
practice, this will generally tend to limit control eligibility to
older siblings, which can lead to confounding by factors related
to year of birth, family size, or birth order, particularly if
time-dependent exposure factors are also under consideration.
Siblings are also more likely to have the same genotype as the
case than are unrelated controls, thereby leading to some loss of
statistical efficiency (i.e., larger sample sizes required to attain
the same statistical precision). They are also more likely to have
common environments, leading to some loss of efficiency for
the main effect of environment as well, although surprisingly
the use of sibling controls generally improves efficiency for
gene-environment interactions (57, 59).

As an alternative to siblings, one might consider using
cousins as controls, which are less likely to be genotype con-
cordant and more readily available, allowing for closer match-
ing on age and year of birth. However, in contrast with siblings,
cousins may be more difficult to identify, less motivated to
participate, and do not provide the same protection from ethnic
stratification because they have only one set of grandparents in
common. They may also introduce geographic confounding if
cases are limited to a defined region and cousin controls live
elsewhere (60). An advantage to family-based designs, how-
ever, can be the power gain by restricting to multiple-case
families, particularly for rare alleles (56), although care is
needed in the analysis to provide unbiased tests and estimates.

An increasingly common study design uses parents to
form controls. More precisely, it is not the parents themselves
who are the controls in this design but the set of genotypes the
parents could have transmitted to the case, given their own
genotypes (the case’s “pseudosibs”). This design can be ana-
lyzed as a 1:3 matched case-control study by conditional lo-
gistic regression, as described by Self et al. (61). (From the
perspective of statistical efficiency, the effective matching ratio
is 1:�.) A special case of this analysis is the TDT (16), in which
the unit of analysis is not the subjects’ genotypes but their two
alleles, one from each parent, each being compared with the
nontransmitted allele. This test is formally equivalent to the
score test from the Self et al. (61) likelihood under a multipli-
cative model for penetrance, whereas the Self et al. (61) ap-
proach allows one to test hypotheses about alternative modes of
inheritance. The use of pseudosib controls has better statistical
efficiency than sibling or cousin controls (even more than
population controls for a recessive gene), but the requirement
that parents be available for genotyping limits its usefulness for
late-onset diseases, such as most cancers. Pseudosib controls
are generally slightly less efficient than population controls for
estimating G � E interactions, except under a recessive model.
Witte et al. (57) further explore the theoretical, statistical, and
practical considerations in choosing between unrelated popu-
lation or family controls.
Genomic Adjustment. Recently, a number of authors have
proposed using genomic information to help address the prob-
lem of bias attributable to population stratification and over-
dispersion attributable to cryptic relatedness. In particular, with
a panel of polymorphic markers that are not linked to the
candidate gene under study, one can attempt to address the
issue population stratification by: (a) using an overdispersion
model to determine a test statistic’s appropriate empirical dis-
tribution; (b) evaluating whether stratification exists; and (c)
using a latent-class model to distinguish homogeneous sub-
populations. The restriction to unlinked genes is intended to

avoid the loss of statistical precision attributable to over ad-
justment by a correlate of the genes of interest; it is not
necessary or desirable, however, to exclude all markers that are
associated with the candidate gene but not linked with them,
because it is precisely these associations that are most inform-
ative to control for the cryptic stratification.

With regard to the overdispersion approach for addressing
population stratification, Devlin and Roeder (29), Bacanu et al.
(62), and Reich and Goldstein (63) point out that in the presence
of population stratification, the null distribution of the usual �2

test of the hypothesis of no association between the disease and
a candidate gene will tend to be shifted toward higher values,
leading to an inflated false-positive rate. If one had enough
unlinked markers that were not causally related to the disease,
one could in principle estimate this null distribution simply by
tabulating the distribution of the observed test statistics across
all of the markers and comparing the value for the specific
candidate gene to this empiric distribution. In practice, how-
ever, the number of “null” markers that would be required to
determine significance levels with any precision would be
prohibitive, probably even with modern single nucleotide poly-
morphism array technologies. However, the theoretical null
distribution in the presence of stratification is shifted by a
multiplicative constant that can be estimated in a straightfor-
ward manner from the observed �2 values for the null marker
data in the same subjects in which one wishes to test a specific
candidate gene (29, 62, 63). For reliable estimation, one may
require 50 or more null markers (30). This genomic adjustment
approach is computationally simple and simultaneously ad-
dresses issues of population stratification bias and overdisper-
sion attributable to cryptic relatedness; furthermore, it allows
for a large number of potential subgroups (i.e., it works well
with very fine-scale substructure; Ref. 29). An investigation of
power indicates that the genomic control approach can gener-
ally be more powerful than the TDT (63). It can be undertaken
with pooled DNA samples as well, which can be substantially
less expensive than individual genotyping.

In another approach, Pritchard and Rosenberg (64) suggest
that inference follow a two-step process; first one uses a panel
of markers to test for stratification and then proceeds to eval-
uating the candidate gene association only if homogeneity is not
rejected. By simulation, they have explored the critical values
that should be used at each stage of the inference process and
shown that the method performs well using a panel of a couple
dozen markers. However, they provide no guidance for what
the investigator should conclude if the hypothesis of homoge-
neity is rejected in the first stage. Most epidemiologists would
be unhappy to learn that a study they had laboriously conducted
should simply be discarded because of the existence of popu-
lation stratification at a panel of markers in which they had no
particular interest!

The third, latent-class approach, entails using genomic
information to distinguish subpopulations within which any
potential population stratification is minimized. For example,
following the above work, Pritchard et al. (65) developed a
Bayesian approach to estimation of ethnic origins. In a popu-
lation comprising a mixture of an unknown number of sub-
populations without admixture, their approach leads to an es-
timate of the posterior distribution of the number of such
subpopulations and the probability that each individual belongs
to any given subpopulation. In the presence of admixture, the
method estimates the proportion of an individual’s genome that
derives from each subpopulation. Schork et al. (66) have re-
cently proposed a similar approach for addressing population
stratification. Kim et al. (67) presented related work suggesting
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using phylogenic trees defined by nonlinked single nucleotide
polymorphisms to cluster individuals into homogeneous sub-
groups. For all of these approaches, once one has an estimate of
the probability of membership within each subgroup, this in-
formation can be incorporated into the analysis of a case-
control study to obtain an estimate of the candidate gene’s
effect, adjusted for potential stratification (68). Bacanu et al.
(69) have also generalized the approach to quantitative traits.
Satten et al. (70) have recently described a different approach
to adjusting for population stratification using molecular mark-
ers, based on a maximum likelihood approach to latent class
models, summing each individual’s likelihood contribution
overall possible strata. The naı̈ve alternative of adding all of the
markers as covariates in a multiple logistic regression, although
appealing for its simplicity, has been shown to produce less
precise estimates than the Pritchard et al. (65) approach.9 Prit-
chard and Donnelly (32) provide simulation studies comparing
the Bayesian clustering and latent-class approaches.

Of course, other aspects of ethnicity (cultural and envi-
ronmental) may play a more important role in the variation in
cancer rates than genetics (23). Nevertheless, to control for
confounding it is sufficient to control for the determinants of
gene frequency. Our conceptual framework is shown in Fig. 1.
We postulate an unobserved stratifying factor we shall call
“race,” which is a determinant of allele frequencies at the
candidate gene (and at each of the marker loci), and is also a
determinant of one or more unobserved risk factors (other
causal genes, environmental, behavioral, or cultural influ-
ences). If, conditional on race, the candidate gene and the other
risk factors are independent, then an analysis that adjusts for
race but not the other risk factors would give unbiased estimates
of the relative risk for the candidate gene. Likewise, an analysis
that adjusts for the other risk factors but not race would also be
unbiased. However, because neither race nor the other risk
factors are directly observable, it is necessary to adjust for
surrogates for one or the other. The question thus reduces to
whether “genomic control” is a better surrogate for race than
self-reported ethnicity is for the unobserved risk factors.

Summary and Conclusions
In light of the classic examples of population stratification, as
well as the population heterogeneity in allele frequencies and

disease rates, we believe that population stratification is a
sufficiently serious concern to merit careful consideration in
interpreting the results of any candidate-gene association that is
not based on the use of family-member controls. This concern
would be mitigated by careful attention to the standard princi-
ples of epidemiological study design, including the choice of a
mechanism for selecting controls that are representative of the
source population of cases and by making some effort to control
ethnicity by restriction, matching, or stratified or multivariate
analysis. For any of these approaches to be successful, infor-
mation on ethnic origin should be obtained in the greatest detail
that is practically feasible. Although there will always be some
risk of residual confounding by ethnicity in case-control studies
using unrelated controls, we do not feel that this problem is
qualitatively different from the problem of uncontrolled con-
founding in virtually any other observational epidemiological
study. However, the considerable range of variation in allele
frequencies across and within ethnic groups and the enormous
magnitude of some genetic risks (compared with those from
most environmental agents) suggests that the problem of con-
founding by population stratification could be more serious in
magnitude than in traditional environmental epidemiology. The
availability of family-based case-control designs that com-
pletely eliminate these concerns suggests that no candidate gene
association should be considered “confirmed” until replicated
by such a study, or at least by multiple well-designed studies in
different populations where any effects of population stratifi-
cation or other methodologic biases are unlikely to act in a
consistent manner.

Rather than continued debate about whether population
stratification is or is not a serious concern, we call for a
systematic program of research to understand the magnitude of
the problem in general. Additional studies of the variation in
allele frequencies of many genes and of the variation in baseline
rates for a wide range of disease and the correlation between the
two would be extremely useful, as would further meta-analyses
of candidate gene associations, with particular attention to
study of the determinants of observed heterogeneity in findings
(71). Finally, we suggest that the promising approaches to use
of genomic information as a means of detecting and controlling
for population stratification merit further application and de-
velopment.
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